(本小题满分12分) 已知函数(Ⅰ)若求函数的值域; (Ⅱ)在中,角A、B、C所对的边分别为a、b、c,若
设直线 l 1 : y = k 1 x + 1 , l 2 : y = k 2 x - 1 ,其中实数 k 1 , k 2 满足 k 1 k 2 + 2 = 0 , (I)证明 l 1 与 l 2 相交; (II)证明 l 1 与 l 2 的交点在椭圆 2 x 2 + y 2 = 1 上.
在 △ A B C 中, a = 3 , b = 2 , 1 + 2 cos B + C = 0 ,求:
(1)角A的大小;
(2)边 B C 上的高.
设函数 f ( x ) 定义在 0 , + ∞ 上, f ( 1 ) = 0 ,导函数 f ` ( x ) = 1 x , g ( x ) = f ( x ) + f ` ( x ) .
(Ⅰ)求 g ( x ) 的单调区间和最小值;
(Ⅱ)讨论 g ( x ) 与 g ( 1 x ) 的大小关系;
(Ⅲ)是否存在 x 0 > 0 ,使得 g ( x ) - g ( x 0 ) < 1 x 对任意 x > 0 成立?若存在,求出 x 0 的取值范围;若不存在请说明理由。
如图,A地到火车站共有两条路径 L 1 和 L 2 ,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。 (Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (Ⅱ)用 X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求 X 的分布列和数学期望。
如图,从点 P 1 ( 0 , 0 ) 作 x 轴的垂线交曲线 y = e x 于点 Q 1 ( 0 , 1 ) ,曲线在 Q 1 点处的切线与 x 轴交于点 P 2 ,再从 P 2 作 x 轴的垂线交曲线于点 Q 2 ,依次重复上述过程得到一系列点: P 1 , Q 1 ; P 2 , Q 2 ; … ; P n , Q n ,记 P k 点的坐标为 ( x k , 0 ) ( k = 1 , 2 , … , n ) .
(Ⅰ)试求 x k 与 x k - 1 的关系( 2 ≤ k ≤ n ) (Ⅱ)求 P 1 Q 1 + P 2 Q 2 + P 3 Q 3 + . . . + P n Q n