(本小题满分12分)已知空间向量(1)求及的值;(2)设函数的最小正周期及取得最大值时x的值。
选修4—4:坐标系与参数方程已知曲线的参数方程: (为参数), 曲线上的点对应的参数,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线的极坐标方程;(Ⅱ)已知直线过点P(1,0),且与曲线于A,B两点,求的范围.
(本小题满分7分)选修4—2:矩阵与变换已知矩阵,试求曲线在矩阵变换下的函数解析式.
已知函数在内有极值.(Ⅰ)求实数的取值范围;(Ⅱ)若,,且时,求证:
已知椭圆的右焦点,离心率为,过作两条互相垂直的弦,设的中点分别为.(1)求椭圆的方程;(2)证明:直线必过定点,并求出此定点坐标;(3)若弦的斜率均存在,求面积的最大值.
下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数;(Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.