(本小题满分12分)已知是等差数列的前n项和,数列是等比数列,恰为的等比中项,圆,直线,对任意,直线都与圆C相切.(Ⅰ)求数列的通项公式;(Ⅱ)若时,的前n项和为,求证:对任意,都有
已知,设.(1)求函数的最小正周期,并写出的减区间;(2)当时,求函数的最大值及最小值.
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是,.(1)求的值;(2)求的值.
设为奇函数,为常数.(1)求的值;(2)证明在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.
已知坐标平面内O为坐标原点,P是线段OM上一个动点.当取最小值时,求的坐标,并求的值.
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?