(选修4—1,几何证明选讲)如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DEAB,垂足为E,且E是OB的中点,求BC的长。
设数列是公比大于1的等比数列,为数列的前项和,已知,且构成等差数列.(1)求数列的通项公式;(2)令,求数列的前项的和.
已知函数(1)当时,求函数取得最大值和最小值;(2)设锐角的内角A、B、C的对应边分别是,且,若向量与向量平行,求的值.
已知函数.(1)当时,讨论函数的单调性;(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?(3)试判断当时图象是否存在不同的两点A、B具有(2)问中所得出的结论.
在平面直角坐标系中,长度为3的线段AB的端点A、B分别在轴上滑动,点M在线段AB上,且,(1)若点M的轨迹为曲线C,求其方程;(2)过点的直线与曲线C交于不同两点E、F,N是曲线上不同于E、F的动点,求面积的最大值.
某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人 (1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场共10人得分大于7分,其中2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列。