已知定义域为R的函数是奇函数.(1)求a的值;(2)判断的单调性(不需要写出理由);(3)若对任意的,不等式恒成立,求的取值范围.
如图所示,点P是椭圆=1上的一点,F1和F2是焦点,且∠F1PF2=30°,求△F1PF2的面积.
求适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y轴上,且经过两个点(0,2)和(1,0); (3)经过P(-2,1),Q(,-2)两点.
在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q. (1)求k的取值范围; (2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量+与共线?如果存在,求k值;如果不存在,请说明理由.
根据下列条件求椭圆的标准方程: (1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点; (2)经过两点A(0,2)和B.
如图所示,已知A、B、C是椭圆E:=1(a>b>0)上的三点,其中点 A的坐标为(2,0),BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|. (1)求点C的坐标及椭圆E的方程; (2)若椭圆E上存在两点P、Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量与是否共线,并给出证明.