(本小题满分12分)已知数列,定义其倒均数是。(1)求数列{}的倒均数是,求数列{}的通项公式;(2)设等比数列的首项为-1,公比为,其倒数均为,若存在正整数k,使得当恒成立,试找出一个这样的k值(只需找出一个即可,不必证明)
已知函数(其中), .(1)若命题是假命题,求的取值范围;(2)若命题,命题满足或为真命题,若是的必要不充分条件,求的取值范围.
在中,分别为内角的对边,且.(1)求角的大小;(2)设函数,当取最大值时,判断的形状.
选修4-4:坐标系与参数方程在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线(为参数).(1)将与的方程化为普通方程;(2)判定直线l与曲线 是否相交,若相交求出被截得的弦长.
已知函数f(x)=xln x,g(x)=(-x2+ax-3)ex(a为实数).(1)当a=5时,求函数y=g(x)在x=1处的切线方程;(2)求f(x)在区间(t>0)上的最小值.
已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4x的焦点,且椭圆E的离心率是.(1)求椭圆E的方程;(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是,求直线AB的方程.