选修4-4:坐标系与参数方程在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线(为参数).(1)将与的方程化为普通方程;(2)判定直线l与曲线 是否相交,若相交求出被截得的弦长.
(本题10分)已知.(1)若,求函数的值域;(2)求证:函数在区间上单调递增.
(本题共10分)(1)计算:(2)解关于的不等式:
(本小题满分为10分)已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点M(1,),过点P(2,1)的直线与椭圆C相交于不同的两点A,B.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分为10分)设等差数列的公差为,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.
(本小题满分为10分)已知点P(-2,-3)和以点Q为圆心的圆。(Ⅰ)求以PQ为直径的圆的方程;(Ⅱ)设⊙与⊙Q相交于点A、B,求直线AB的一般式方程。(Ⅲ)设直线:与圆Q相交于点C、D,求截得的弦CD的长度最短时的值。