选修4-4:坐标系与参数方程在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线(为参数).(1)将与的方程化为普通方程;(2)判定直线l与曲线 是否相交,若相交求出被截得的弦长.
某固定在墙上的广告金属支架如图所示,根据要求,长要超过4米(不含4米),为的中点,到的距离比的长小1米, (1)若,将支架的总长度表示为的函数,并写出函数的定义域.(注:支架的总长度为图中线段、和的长度之和) (2)如何设计、的长,可使支架总长度最短.
如图于,,,分别为的中点,若 (1)求证:; (2)求的长.
锐角中,角的对边分别是,已知, (1)求的值; (2)当时,求的长及的面积.
(1)已知,若关于不等式的解集为空集,求的取值范围; (2) 已知,且,求证:
在直角坐标系中,直线的参数方程为为参数),若以O点为极点,轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为。 (1)求曲线C的直角坐标方程及直线的普通方程; (2)将曲线C上各点的横坐标缩短为原来的,再将所得曲线向左平移1个单位,得到曲线,求曲线上的点到直线的距离的最小值