设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为的椭圆记作C2(1)求椭圆的标准方程;(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点。当以B1B2为直径的圆经过F1时,求|A1A2|长。(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆,是否存在定圆,使得与恒相切?若存在,求出的方程,若不存在,请说明理由。
如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC. (1)求证:平面EFGH; (2)求证:四边形EFGH是矩形.
如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心. (1)求直线EF与平面ABCD所成角的正切值; (2)求异面直线A1C与EF所成角的余弦值.
已知定义在R上的函数f(x)=的周期为,且对一切xR,都有f(x); (1)求函数f(x)的表达式; (2)若g(x)=f(),求函数g(x)的单调增区间;
已知函数在一个周期内的图像下图所示。 (1)求函数的解析式; (2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。
正项数列中,前n项和为,且,且. (1)求数列的通项公式; (2)设,,证明.