高中数学

(本小题满分14分)已知函数
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)设,其中为正实数。
(1)当时,求的极值点;
(2)若为R上的单调函数,求的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
设函数,其中表示不超过的最大整数,如.
  (1)求的值;
(2)若在区间上存在x,使得成立,求实数k的取值范围;
(3)求函数的值域.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
(1)若对定义域内任意,都有成立,求实数的值;
(2)若函数在定义域上是单调函数,求的范围;
(3)若,证明对任意正整数,不等式都成立.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(I)求的最小值;
(II)若对所有都有,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数在点处的切线方程为
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数 (R).
(1)若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

本题满分分 已知函数f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知函数
(Ⅰ)若函数处取得极值,求实数a的值;
(Ⅱ)在(I)条件下,若直线与函数的图象相切,求实数k的值;
(Ⅲ)记,求满足条件的实数a的集合.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 
(Ⅰ)设在区间的最小值为,求的表达式;
(Ⅱ)设,若函数在区间上是增函数,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分16分)
已知函数,若为定义在R上的奇函数,则(1)求实数的值;(2)求函数的值域;(3)求证:在R上为增函数;(4)若m为实数,解关于的不等式:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分16分)已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数。
(1)求上的最大值;
(2)若恒成立,求的取值范围;
(3)讨论关于的方程的根的个数。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数
(1)是否存在实数,使得函数的定义域、值域都是,若存在,则求出的值,若不存在,请说明理由.
(2)若存在实数,使得函数的定义域为时,值域为 (),求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若不等式对任意的实数恒成立,求实数的取值范围;
(2)设,且上单调递增,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数,若对于任意,总存在,使得,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代解答题