(本小题满分12分)已知函数(1)是否存在实数,使得函数的定义域、值域都是,若存在,则求出的值,若不存在,请说明理由.(2)若存在实数,使得函数的定义域为时,值域为 (),求的取值范围.
设等差数列的前项的和为,且,求: (1)的通项公式及前项的和; (2)
如图(5)所示,已知设是直线上的一点, (其中为坐标原点). (Ⅰ)求使取最小值时的点的坐标和此时的余弦值. (Ⅱ)对于(Ⅰ)中的.若是线段的三等分点,且,与交于点,设试用表示和.
已知角的顶点与直角坐标系的原点重合,始边在轴的非负半轴上,终边经过点,求的值
在中,已知内角,边,设内角,周长为. (1)求函数的解析式; (2)求的最大值.
比较两数大小:和