如图(5)所示,已知设是直线上的一点, (其中为坐标原点).(Ⅰ)求使取最小值时的点的坐标和此时的余弦值. (Ⅱ)对于(Ⅰ)中的.若是线段的三等分点,且,与交于点,设试用表示和.
(本小题满分12分)已知数列. (1)求数列的通项公式; (2)设,探求使恒成立的的最大整数值.
(本小题满分12分) 港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问检查站C离港口A有多远?
(本小题满分12分) 如图,平面⊥平面,是直角三角形,,四边形是直角梯形,其中,,,且,是的中点,分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的正切值.
已知数列是递增数列,且满足。 (1)若是等差数列,求数列的通项公式; (2)对于(1)中,令,求数列的前项和。
已知圆,直线,点在直线上,过点作圆的切线、,切点为、. (Ⅰ)若,求点坐标; (Ⅱ)若点的坐标为,过作直线与圆交于、两点,当时,求直线的方程; (III)求证:经过、、三点的圆与圆的公共弦必过定点,并求出定点的坐标.