【问题提出】
如图(1),在 中, , 是 的中点,延长 至点 ,使 ,延长 交 于点 ,探究 的值.
【问题探究】
(1)先将问题特殊化.如图(2),当 时,直接写出 的值;
(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.
【问题拓展】
如图(3),在 中, , 是 的中点, 是边 上一点, ,延长 至点 ,使 ,延长 交 于点 .直接写出 的值(用含 的式子表示).
在一条笔直的滑道上有黑、白两个小球同向运动,黑球在 处开始减速,此时白球在黑球前面 处.
小聪测量黑球减速后的运动速度 (单位: )、运动距离 (单位: )随运动时间 (单位: )变化的数据,整理得下表.
运动时间t/s |
|
|
|
|
|
运动速度v/cm/s |
|
|
9 |
|
|
运动距离y/cm |
|
|
19 |
|
|
小聪探究发现,黑球的运动速度 与运动时间 之间成一次函数关系,运动距离 与运动时间 之间成二次函数关系.
(1)直接写出 关于 的函数解析式和 关于 的函数解析式(不要求写出自变量的取值范围);
(2)当黑球减速后运动距离为 时,求它此时的运动速度;
(3)若白球一直以 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.
如图,以 为直径的 经过 的顶点 , 分别平分 和 , 的延长线交 于点 ,连接 .
(1)判断 的形状,并证明你的结论;
(2)若 , ,求 的长.
为庆祝中国共青团成立 周年,某校开展四项活动: 项参观学习, 项团史宣讲, 项经典诵读, 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.
(1)本次调查的样本容量是_____, 项活动所在扇形的圆心角的大小是_____,条形统计图中 项活动的人数是_____;
(2)若该校约有 名学生,请估计其中意向参加“参观学习”活动的人数.
如图,在四边形 中, , .
(1)求 的度数;
(2) 平分 交 于点 , .求证: .
解不等式组 请按下列步骤完成解答.
(1)解不等式①,得_____;
(2)解不等式②,得_____;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集是_____.
如图,在平面直角坐标系中,一次函数 的图象与 轴交于点 ,与 轴交于点 ,与直线 交于点.
(1)求直线 的函数表达式;
(2)过点 作 轴于点 ,将 沿射线 平移得到的三角形记为 ,点 的对应点分别为 ,若 与 重叠部分的面积为 ,平移的距离 ,当点 与点 重合时停止运动.
①若直线 交直线 于点 ,则线段 的长为______(用含有 的代数式表示);
②当 时, 与 的关系式为______;
③当 时, 的值为______.
如图,四边形 内接于 , 是 的直径, 的延长线交于点 ,延长 交 于点 , .
(1)求证: 是 的切线;
(2)连接 , , , 的长为______.
如图,用一根 厘米的铁丝制作一个“日”字型框架 ,铁丝恰好全部用完.
(1)若所围成的矩形框架 的面积为 平方厘米,则 的长为多少厘米?
(2)矩形框架 面积的最大值为______平方厘米.
某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.
根据以上信息,解答下列问题:
(1)此次被调查的学生人数为______名;
(2)补全条形统计图;
(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;
(4)根据抽样调查结果,请你估计该校 名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.
如图,在 中, 是 的角平分线,分别以点 为圆心,大于 的长为半径作弧,两弧交于点 ,作直线 ,分别交 , 于点 ,连接 .
(1)由作图可知,直线 是线段 的______.
(2)求证:四边形AEDF是菱形.
为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号 ,分别写在完全相同的 张卡片的正面,将卡片背面朝上洗匀.
(1)随机抽取一张卡片,卡片上的数字是“ ”的概率是______;
(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“ ”和“ ”的概率.