如图,在平面直角坐标系中,一次函数 y = k x + b 的图象与 x 轴交于点 A ,与 y 轴交于点 B ( 0 , 9 ) ,与直线 O C 交于点.
(1)求直线 A B 的函数表达式;
(2)过点 C 作 C D ⊥ x 轴于点 D ,将 △ A C D 沿射线 C B 平移得到的三角形记为 △ A ′ C ′ D ′ ,点 A , C , D 的对应点分别为 A ′ , C ′ , D ′ ,若 △ A ′ C ′ D ′ 与 △ B O C 重叠部分的面积为 S ,平移的距离 C C ′ = m ,当点 A ′ 与点 B 重合时停止运动.
①若直线 C ′ D ′ 交直线 O C 于点 E ,则线段 C ′ E 的长为______(用含有 m 的代数式表示);
②当 0 < m < 10 3 时, S 与 m 的关系式为______;
③当 S = 24 5 时, m 的值为______.
如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明. 备选条件:AE=CF,BE=DF,∠AEB=∠CFD, 我选择添加的条件是. 证明:
已知,若函数是关于x的一次函数. (1)求的值,并写出解析式; (2)判断点(1,2)是否在此函数图像上,说明理由.
如图,在矩形ABCD中,AB=8cm,BC=20cm,E是AD的中点.动点P从A点出发,沿A-B-C路线以1cm/秒的速度运动,运动的时间为t秒.将APE以EP为折痕折叠,点A的对应点记为M. (1)如图(1),当点P在边AB上,且点M在边BC上时,求运动时间t; (2)如图(2),当点P在边BC上,且点M也在边BC上时,求运动时间t; (3)直接写出点P在运动过程中线段BM长的最小值.
小明在解决问题:已知a=,求的值. 他是这样分析与解的:∵a==, ∴a-2=,∴ ∴,∴=2(=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)化简 (2)若a=,①求的值; ②直接写出代数式的值= ;= .
(1)叙述三角形中位线定理,并运用平行四边形的知识证明; (2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E,F分别是AB,CD的中点,求证EF=.