初中数学

定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形 ABCD 中, A = B = C ,求 A 的取值范围;

(2)如图,折叠平行四边形纸片 DEBF ,使顶点 E F 分别落在边 BE BF 上的点 A C 处,折痕分别为 DG DH .求证:四边形 ABCD 是三等角四边形.

(3)三等角四边形 ABCD 中, A = B = C ,若 CB = CD = 4 ,则当 AD 的长为何值时, AB 的长最大,其最大值是多少?并求此时对角线 AC 的长.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:在 ΔABC 外分别以 AB AC 为边作 ΔAEB ΔAFC

(1)如图1, ΔAEB ΔAFC 分别是以 AB AC 为斜边的等腰直角三角形,连接 EF .以 EF 为直角边构造 Rt Δ EFG ,且 EF = FG ,连接 BG CG EC

求证:① ΔAEF ΔCGF

②四边形 BGCE 是平行四边形.

(2)小明受到图1的启发做了进一步探究:

如图2,在 ΔABC 外分别以 AB AC 为斜边作 Rt Δ AEB Rt Δ AFC ,并使 FAC = EAB = 30 ° ,取 BC 的中点 D ,连接 DE EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出 ED EF 的值及 DEF 的度数.

(3)小颖受到启发也做了探究:

如图3,在 ΔABC 外分别以 AB AC 为底边作等腰三角形 AEB 和等腰三角形 AFC ,并使 CAF + EAB = 90 ° ,取 BC 的中点 D ,连接 DE EF 后发现,当给定 EAB = α 时,两者间也存在一定的数量关系且夹角度数一定,若 AE = m AB = n ,请你帮助小颖用含 m n 的代数式直接写出 ED EF 的值,并用含 α 的代数式直接表示 DEF 的度数.

来源:2019年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,点 P 为正方形 ABCD 的对角线 AC 上的一点,连接 BP 并延长交 CD 于点 E ,交 AD 的延长线于点 F O ΔDEF 的外接圆,连接 DP

(1)求证: DP O 的切线;

(2)若 tan PDC = 1 2 ,正方形 ABCD 的边长为4,求 O 的半径和线段 OP 的长.

来源:2019年辽宁省本溪市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

如图, AB O 直径,点 C D O 上的两点,且 AD ̂ = CD ̂ ,连接 AC BD 交于点 E O 的切线 AF BD 延长线相交于点 F A 为切点.

(1)求证: AF = AE

(2)若 AB = 8 BC = 2 ,求 AF 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为点 P ,直线 BF AD 的延长线交于点 F ,且 AFB = ABC

(1)求证:直线 BF O 的切线.

(2)若 CD = 2 3 OP = 1 ,求线段 BF 的长.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E DC 边的中点,连接 AE ,若 AE 的延长线和 BC 的延长线相交于点 F

(1)求证: BC = CF

(2)连接 AC BE 相交于点为 G ,若 ΔGEC 的面积为2,求平行四边形 ABCD 的面积.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在 ΔABC 中, CD 为角平分线, A = 40 ° B = 60 ° ,求证: CD ΔABC 的完美分割线.

(2)在 ΔABC 中, A = 48 ° CD ΔABC 的完美分割线,且 ΔACD 为等腰三角形,求 ACB 的度数.

(3)如图2, ΔABC 中, AC = 2 BC = 2 CD ΔABC 的完美分割线,且 ΔACD 是以 CD 为底边的等腰三角形,求完美分割线 CD 的长.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,延长 CA 到点 D ,以 AD 为直径作 O ,交 BA 的延长线于点 E ,延长 BC 到点 F ,使 BF = EF

(1)求证: EF O 的切线;

(2)若 OC = 9 AC = 4 AE = 8 ,求 BF 的长.

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:

请你根据上述定义举一个等邻角四边形的例子;

(2)问题探究:

如图1,在等邻角四边形 ABCD 中, DAB = ABC AD BC 的中垂线恰好交于 AB 边上一点 P ,连接 AC BD ,试探究 AC BD 的数量关系,并说明理由;

(3)应用拓展:

如图2,在 Rt Δ ABC Rt Δ ABD 中, C = D = 90 ° BC = BD = 3 AB = 5 ,将 Rt Δ ABD 绕着点 A 顺时针旋转角 α ( 0 ° < α < BAC ) 得到 Rt AB ' D ' (如图 3 ) ,当凸四边形 AD ' BC 为等邻角四边形时,求出它的面积.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中,若 AC 平分 BAD A C 2 = AB · AD ,且 AD = AB + AC ,则我们称这样的四边形 ABCD 为“黄金四边形”, BAD 称为“黄金角”.

【概念理解】(1)已知四边形 ABCD 为“黄金四边形”, BAD 为“黄金角”, AB < AD ,若 AD = 1 ,则 AC =   

【问题探究】(2)如图2,在四边形 ABCD 中, BC / / AD BAC = DAC = D = 36 ° .求证:四边形 ABCD 为“黄金四边形”.

【拓展延伸】(3)如图3,在“黄金四边形” ABC A 1 中, BA A 1 为“黄金角”, AB < A A 1 ,在四边形 ABC A 1 外部依次作△ A A 1 A 2 ,△ A A 2 A 3 ,使四边形 AC A 1 A 2 A A 1 A 2 A 3 均为“黄金四边形”,且满足 CA A 2 A n A A n + 2 ( n = 1 ,2, 3 ) 均为“黄金角”, A A n < A A n + 1 ( n = 1 ,2, 3 )

①若 AC = 1 ,则第 n 个“黄金四边形”中, A A n =   (用含 n 的式子表示).

②若“黄金角” BA A 1 = 80 ° ,则当 A B A n 三点第一次在同一条直线上时, n =   

来源:2018年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D E 分别在边 AB AC 上, AED = B ,射线 AG 分别交线段 DE BC 于点 F G ,且 AD AC = DF CG

(1)求证: ΔADF ΔACG

(2)若 AD AC = 1 2 ,求 AF FG 的值.

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 °

(1)作出经过点 B ,圆心 O 在斜边 AB 上且与边 AC 相切于点 E O (要求:用尺规作图,保留作图痕迹,不写作法和证明)

(2)设(1)中所作的 O 与边 AB 交于异于点 B 的另外一点 D ,若 O 的直径为5, BC = 4 ;求 DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, AB 为圆 O 的直径, C 为圆 O 上一点, D BC 延长线一点,且 BC = CD CE AD 于点 E

(1)求证:直线 EC 为圆 O 的切线;

(2)设 BE 与圆 O 交于点 F AF 的延长线与 CE 交于点 P ,已知 PCF = CBF PC = 5 PF = 4 ,求 sin PEF 的值.

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,过 O 外一点 P O 的切线 PA O 于点 A ,连接 PO 并延长,与 O 交于 C D 两点, M 是半圆 CD 的中点,连接 AM CD 于点 N ,连接 AC CM

(1)求证: C M 2 = MN MA

(2)若 P = 30 ° PC = 2 ,求 CM 的长.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题