已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连接 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
如图,在锐角三角形 中,点 , 分别在边 , 上, 于点 , 于点 , .
(1)求证: ;
(2)若 , ,求 的值.
定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形 中, ,求 的取值范围;
(2)如图,折叠平行四边形纸片 ,使顶点 , 分别落在边 , 上的点 , 处,折痕分别为 , .求证:四边形 是三等角四边形.
(3)三等角四边形 中, ,若 ,则当 的长为何值时, 的长最大,其最大值是多少?并求此时对角线 的长.
如图, 是 直径,点 , 为 上的两点,且 ,连接 , 交于点 , 的切线 与 延长线相交于点 , 为切点.
(1)求证: ;
(2)若 , ,求 的长.
如图, 为 的直径,弦 ,垂足为点 ,直线 与 的延长线交于点 ,且 .
(1)求证:直线 是 的切线.
(2)若 , ,求线段 的长.
如图,在平行四边形 中, 为 边的中点,连接 ,若 的延长线和 的延长线相交于点 .
(1)求证: ;
(2)连接 和 相交于点为 ,若 的面积为2,求平行四边形 的面积.
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在 中, 为角平分线, , ,求证: 为 的完美分割线.
(2)在 中, , 是 的完美分割线,且 为等腰三角形,求 的度数.
(3)如图2, 中, , , 是 的完美分割线,且 是以 为底边的等腰三角形,求完美分割线 的长.
如图,在 中, ,延长 到点 ,以 为直径作 ,交 的延长线于点 ,延长 到点 ,使 .
(1)求证: 是 的切线;
(2)若 , , ,求 的长.
我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究:
如图1,在等邻角四边形 中, , , 的中垂线恰好交于 边上一点 ,连接 , ,试探究 与 的数量关系,并说明理由;
(3)应用拓展:
如图2,在 与 中, , , ,将 绕着点 顺时针旋转角 得到 △ (如图 ,当凸四边形 为等邻角四边形时,求出它的面积.
已知:在 外分别以 , 为边作 与 .
(1)如图1, 与 分别是以 , 为斜边的等腰直角三角形,连接 .以 为直角边构造 ,且 ,连接 , , .
求证:① .
②四边形 是平行四边形.
(2)小明受到图1的启发做了进一步探究:
如图2,在 外分别以 , 为斜边作 与 ,并使 ,取 的中点 ,连接 , 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出 的值及 的度数.
(3)小颖受到启发也做了探究:
如图3,在 外分别以 , 为底边作等腰三角形 和等腰三角形 ,并使 ,取 的中点 ,连接 , 后发现,当给定 时,两者间也存在一定的数量关系且夹角度数一定,若 , ,请你帮助小颖用含 , 的代数式直接写出 的值,并用含 的代数式直接表示 的度数.
如图,在 中,点 , 分别在边 , 上, ,射线 分别交线段 , 于点 , ,且 .
(1)求证: ;
(2)若 ,求 的值.
如图,在 中, .
(1)作出经过点 ,圆心 在斜边 上且与边 相切于点 的 (要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)设(1)中所作的 与边 交于异于点 的另外一点 ,若 的直径为5, ;求 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
已知:如图,在 中, ,点 是斜边 的中点, ,且 , 于点 ,连接 、 .
(1)求证: ;
(2)求证: ;
(3)设 的面积为 ,四边形 的面积为 ,当 时,求 的值.
如图, 为圆 的直径, 为圆 上一点, 为 延长线一点,且 , 于点 .
(1)求证:直线 为圆 的切线;
(2)设 与圆 交于点 , 的延长线与 交于点 ,已知 , , ,求 的值.