如图, AB 为圆 O 的直径, C 为圆 O 上一点, D 为 BC 延长线一点,且 BC = CD , CE ⊥ AD 于点 E .
(1)求证:直线 EC 为圆 O 的切线;
(2)设 BE 与圆 O 交于点 F , AF 的延长线与 CE 交于点 P ,已知 ∠ PCF = ∠ CBF , PC = 5 , PF = 4 ,求 sin ∠ PEF 的值.
先化简式子,然后从中选择一个合适的整数代入求值.
同时投掷两个正方体骰子,请用列举法求出点数的和小于5的概率.
解不等式,并在数轴上表示它的解集.
如图,,四边形OABC为直角梯形,点A、B、C的坐标分别是(2,6),(8,6),(8,0).动点F、D分别从O、B同时出发,以每秒1个单位速度.其中点F沿着OC向终点C运动,点D沿着BA方向向终点A运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点D做DEAB,交OB于E,连接EF,已知动点运动了x秒.x的取值范围多少?E 点坐标是 ;(用含代数式表示)试求△OFE面积最大值,并求此时x的值.
某钢铁厂现有工人1000人,原来全部从事钢铁生产,为了企业改革的需要,准备将其中一部分工人分流从事服务行业,经过调研发现,工厂的纯利润y1(百万元)与从事钢铁生产的工人人数x(百人)的关系y1=,从事服务行业的利润y2(百万元)与从事服务行业的人数t(百人)的关系是y2=,工厂的总利润y(百万元)为钢铁生产的纯利润与服务行业的纯利润的和。写出y2关于x的函数关系式。写出y关于x的函数关系式。工厂应如何安排,才能使总利润最大?