初中数学

如图所示,在平面直角坐标系中,过点 A - 3 , 0 )的两条直线分别交 y轴于 BC两点,且 BC两点的纵坐标分别是一元二次方程 x 2﹣2 x﹣3=0的两个根

(1)求线段 BC的长度;

(2)试问:直线 AC与直线 AB是否垂直?请说明理由;

(3)若点 D在直线 AC上,且 DBDC,求点 D的坐标;

(4)在(3)的条件下,直线 BD上是否存在点 P,使以 ABP三点为顶点的三角形是等腰三角形?若存在,请直接写出 P点的坐标;若不存在,请说明理由.

来源:2016年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y = m 3 m 2 x ( x > 0 , m > 1 ) 图象上一点,点 A 的横坐标为 m ,点 B ( 0 , m ) y 轴负半轴上的一点,连接 AB AC AB ,交 y 轴于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A AE 平行于 x 轴,过点 D y 轴平行线交 AE 于点 E

(1)当 m = 3 时,求点 A 的坐标;

(2) DE =   ,设点 D 的坐标为 ( x , y ) ,求 y 关于 x 的函数关系式和自变量的取值范围;

(3)连接 BD ,过点 A BD 的平行线,与(2)中的函数图象交于点 F ,当 m 为何值时,以 A B D F 为顶点的四边形是平行四边形?

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + 5 ( k 1 < 0 ) 的图象与坐标轴交于 A B 两点,与反比例函数 y = k 2 x ( k 2 > 0 ) 的图象交于 M N 两点,过点 M MC y 轴于点 C ,已知 CM = 1

(1)求 k 2 k 1 的值;

(2)若 AM AN = 1 4 ,求反比例函数的解析式;

(3)在(2)的条件下,设点 P x 轴(除原点 O 外)上一点,将线段 CP 绕点 P 按顺时针或逆时针旋转 90 ° 得到线段 PQ ,当点 P 滑动时,点 Q 能否在反比例函数的图象上?如果能,求出所有的点 Q 的坐标;如果不能,请说明理由.

来源:2017年广西玉林市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.

根据以上定义,解决下列问题:

(1)如图1,正方形 ABCD 中, E CD 上的点,将 ΔBCE B 点旋转,使 BC BA 重合,此时点 E 的对应点 F DA 的延长线上,则四边形 BEDF 为"直等补"四边形,为什么?

(2)如图2,已知四边形 ABCD 是"直等补"四边形, AB = BC = 5 CD = 1 AD > AB ,点 B 到直线 AD 的距离为 BE

①求 BE 的长;

②若 M N 分别是 AB AD 边上的动点,求 ΔMNC 周长的最小值.

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,动点 M 在以 O 为圆心, AB 为直径的半圆弧上运动(点 M 不与点 A B AB ̂ 的中点 F 重合),连接 OM .过点 M ME AB 于点 E ,以 BE 为边在半圆同侧作正方形 BCDE ,过点 M O 的切线交射线 DC 于点 N ,连接 BM BN

(1)探究:如图一,当动点 M AF ̂ 上运动时;

①判断 ΔOEM ΔMDN 是否成立?请说明理由;

②设 ME + NC MN = k k 是否为定值?若是,求出该定值,若不是,请说明理由;

③设 MBN = α α 是否为定值?若是,求出该定值,若不是,请说明理由;

(2)拓展:如图二,当动点 M FB ̂ 上运动时;

分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)

来源:2017年湖南省湘潭市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 E 为边 AB 上一动点,连接 CE 并将其绕点 C 顺时针旋转 90 ° 得到 CF ,连接 DF ,以 CE CF 为邻边作矩形 CFGE GE AD AC 分别交于点 H M GF CD 延长线于点 N

(1)证明:点 A D F 在同一条直线上;

(2)随着点 E 的移动,线段 DH 是否有最小值?若有,求出最小值;若没有,请说明理由;

(3)连接 EF MN ,当 MN / / EF 时,求 AE 的长.

来源:2017年湖南省衡阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,中,内部一点,且

(1)求证:

(2)求证:

(3)若点到三角形的边的距离分别为,求证

来源:2019年安徽省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图1和图2,在中,.点边上,点分别在上,且.点从点出发沿折线匀速移动,到达点时停止;而点边上随移动,且始终保持

(1)当点上时,求点与点的最短距离;

(2)若点上,且的面积分成上下两部分时,求的长;

(3)设点移动的路程为,当时,分别求点到直线的距离(用含的式子表示);

(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点再到共用时36秒.若,请直接写出点被扫描到的总时长.

来源:2020年河北省中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知抛物线 y = a x 2 + 4 ax + 4 a - 6 ( a > 0 ) x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,顶点为点 D

(1)当 a = 6 时,直接写出点 A B C D 的坐标:

A    B    C    D   

(2)如图1,直线 DC x 轴于点 E ,若 tan AED = 4 3 ,求 a 的值和 CE 的长;

(3)如图2,在(2)的条件下,若点 N OC 的中点,动点 P 在第三象限的抛物线上,过点 P x 轴的垂线,垂足为 Q ,交 AN 于点 F ;过点 F FH DE ,垂足为 H .设点 P 的横坐标为 t ,记 f = FP + FH

①用含 t 的代数式表示 f

②设 - 5 < t m ( m < 0 ) ,求 f 的最大值.

来源:2020年湖北省孝感市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 90 ° AB = 3 AC = 4 ,点 M Q 分别是边 AB BC 上的动点(点 M 不与 A B 重合),且 MQ BC ,过点 M BC 的平行线 MN ,交 AC 于点 N ,连接 NQ ,设 BQ x

(1)试说明不论 x 为何值时,总有 ΔQBM ΔABC

(2)是否存在一点 Q ,使得四边形 BMNQ 为平行四边形,试说明理由;

(3)当 x 为何值时,四边形 BMNQ 的面积最大,并求出最大值.

来源:2019年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AC BD 交于点 O E BD 上一点, EF / / AB EAB = EBA ,过点 B DA 的垂线,交 DA 的延长线于点 G

(1) DEF AEF 是否相等?若相等,请证明;若不相等,请说明理由;

(2)找出图中与 ΔAGB 相似的三角形,并证明;

(3) BF 的延长线交 CD 的延长线于点 H ,交 AC 于点 M .求证: B M 2 = MF · MH

来源:2018年山东省泰安市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线相交于点 O M ΔBCD 的内切圆,切点分别为 N P Q DN = 4 BN = 6

(1)求 BC CD

(2)点 H 从点 A 出发,沿线段 AD 向点 D 以每秒3个单位长度的速度运动,当点 H 运动到点 D 时停止,过点 H HI / / BD AC 于点 I ,设运动时间为 t 秒.

①将 ΔAHI 沿 AC 翻折得△ AH ' I ,是否存在时刻 t ,使点 H ' 恰好落在边 BC 上?若存在,求 t 的值;若不存在,请说明理由;

②若点 F 为线段 CD 上的动点,当 ΔOFH 为正三角形时,求 t 的值.

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + 2 x + c x 轴交于 A ( 4 , 0 ) B ( 1 , 0 ) 两点,过点 B 的直线 y = kx + 2 3 分别与 y 轴及抛物线交于点 C D

(1)求直线和抛物线的表达式;

(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, ΔPDC 为直角三角形?请直接写出所有满足条件的 t 的值;

(3)如图2,将直线 BD 沿 y 轴向下平移4个单位后,与 x 轴, y 轴分别交于 E F 两点,在抛物线的对称轴上是否存在点 M ,在直线 EF 上是否存在点 N ,使 DM + MN 的值最小?若存在,求出其最小值及点 M N 的坐标;若不存在,请说明理由.

来源:2018年山东省烟台市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题