如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y = m 3 − m 2 x ( x > 0 , m > 1 ) 图象上一点,点 A 的横坐标为 m ,点 B ( 0 , − m ) 是 y 轴负半轴上的一点,连接 AB , AC ⊥ AB ,交 y 轴于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴平行线交 AE 于点 E .
(1)当 m = 3 时,求点 A 的坐标;
(2) DE = ,设点 D 的坐标为 ( x , y ) ,求 y 关于 x 的函数关系式和自变量的取值范围;
(3)连接 BD ,过点 A 作 BD 的平行线,与(2)中的函数图象交于点 F ,当 m 为何值时,以 A 、 B 、 D 、 F 为顶点的四边形是平行四边形?
解下列方程和方程组(每小题4分,共8分) (1) (2)
(本小题满分8分) ①化简 ②化简并求值然后从2,-2,3中任选一个你喜欢的a的值代入求值.
(本小题满分6分)计算 ① ②
菱形ABCD的边长为2,∠BAD=60°,对角线AC,BD相交于点O,动点P在线段AC上从点A向点C运动,过P作PE∥AD,交AB于点E,过P作PF∥AB,交AD于点F,四边形QHCK与四边形PEAF关于直线BD对称.设菱形ABCD被这两个四边形盖住部分的面积为S,AP=x:则: (1)对角线AC的长为;S菱形ABCD=; (2)用含x的代数式表示S; (3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为y,当y=S菱形ABCD时,求x的值.
在ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE. (1)如图①,试判断四边形EGFH的形状,并说明理由; (2)如图②,当EF⊥GH时,四边形EGFH的形状是; (3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是; (4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.