如图①,在钝角 中, , ,点 为边 中点,点 为边 中点,将 绕点 逆时针方向旋转 度 .
(1)如图②,当 时,连接 、 .求证: ;
(2)如图③,直线 、 交于点 .在旋转过程中, 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;
(3)将 从图①位置绕点 逆时针方向旋转 ,求点 的运动路程.
如图,在以线段 为直径的 上取一点 ,连接 、 .将 沿 翻折后得到 .
(1)试说明点 在 上;
(2)在线段 的延长线上取一点 ,使 .求证: 为 的切线;
(3)在(2)的条件下,分别延长线段 、 相交于点 ,若 , ,求线段 的长.
如图, 为 的直径, 为 上一点, 是弧 的中点, 与 、 分别交于点 、 .
(1)求证: ;
(2)求证: ;
(3)若 ,求 的值.
如图,点 在以 为直径的 上,点 是 的中点,连接 并延长交 于点 ,作 , 交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
如图,矩形 中, , ,将此矩形绕点 顺时针方向旋转 得到矩形 ,点 在边 上.
(1)若 , ,求在旋转过程中,点 到点 所经过路径的长度;
(2)将矩形 继续绕点 顺时针方向旋转得到矩形 ,点 在 的延长线上,设边 与 交于点 ,若 ,求 的值.
如图,在 中, 是 边上的中线,以 为直径的 交 于点 ,过 作 于点 ,交 的延长线于点 ,过点 作 于 .
(1)求证: ;
(2)求证:直线 是 的切线.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
如图,矩形 中, , . , 分别在 , 上,点 与点 关于 所在的直线对称, 是边 上的一动点.
(1)连接 , ,求证四边形 是菱形;
(2)当 的周长最小时,求 的值;
(3)连接 交 于点 ,当 时,求 的长.
如图,在四边形 中, ,过点 作 于 ,若 .
(1)求证: ;
(2)连接 交 于点 ,若 , ,求 的长.
问题1:如图①,在 中, , 是 上一点(不与 , 重合), ,交 于点 ,连接 .设 的面积为 , 的面积为 .
(1)当 时, ;
(2)设 ,请你用含字母 的代数式表示 .
问题2:如图②,在四边形 中, , , , 是 上一点(不与 , 重合), ,交 于点 ,连接 .设 ,四边形 的面积为 , 的面积为 .请你利用问题1的解法或结论,用含字母 的代数式表示 .
如图,正方形 中, , 是 边的中点,点 是正方形内一动点, ,连接 ,将线段 绕点 逆时针旋转 得 ,连接 , .
(1)求证: ;
(2)若 , , 三点共线,连接 ,求线段 的长.
(3)求线段 长的最小值.
如图,在正方形 中, 是 上一点,连接 .过点 作 ,垂足为 , 经过点 、 、 ,与 相交于点 .
(1)求证: ;
(2)若正方形 的边长为4, ,求 的半径.
如图1,图形 是由两个二次函数 与 的部分图象围成的封闭图形.已知 、 、 .
(1)直接写出这两个二次函数的表达式;
(2)判断图形 是否存在内接正方形(正方形的四个顶点在图形 上),并说明理由;
(3)如图2,连接 , , ,在坐标平面内,求使得 与 相似(其中点 与点 是对应顶点)的点 的坐标.
如图, 是 的平分线,点 在 上,以 为直径的 交 于点 ,过点 作 的垂线,垂足为点 ,交 于点 .
(1)求证:直线 是 的切线;
(2)若 ,设 的半径为 ,求 的长度.