已知: 、 两点在直线 的同一侧,线段 , 均是直线 的垂线段,且 在 的右边, ,将 沿直线 向右平移,在平移过程中,始终保持 不变, 边与直线 相交于点 .
(1)当 与 重合时(如图2所示),设点 是 的中点,连接 .求证:四边形 是正方形;
(2)请利用如图1所示的情形,求证: ;
(3)若 ,且当 时,请直接写出 和 的长.
已知,抛物线 与 轴交于 、 两点,与 轴交于点 ,抛物线的对称轴是直线 , 为抛物线的顶点,点 在 轴 点的上方,且 .
(1)求抛物线的解析式及顶点 的坐标;
(2)求证:直线 是 外接圆的切线;
(3)在直线 上方的抛物线上找一点 ,使 ,求点 的坐标;
(4)在坐标轴上找一点 ,使以点 、 、 为顶点的三角形与 相似,直接写出点 的坐标.
如图,点 在正方形 边 上,点 是线段 上的动点(不与点 重合), 交 于点 , 于点 , , .
(1)求 ;
(2)设 , ,试探究 与 的函数关系式(写出 的取值范围);
(3)当 时,判断 与 的位置关系并说明理由.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
如图, 是 直径,弦 ,垂足为点 .弦 交 于点 ,点 在 延长线上,且 .
(1)求证: 为 切线;
(2)若 , , ,求 的长.
如图, 为 的直径, 为 上一点, ,垂足为 , 平分 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在 中, ,以 的中点 为圆心, 为直径的圆交 于 , 是 的中点, 交 的延长线于 .
(1)求证: 是圆 的切线:
(2)若 , ,求 的长.
如图,在 中, , 轴, 为坐标原点, 的坐标为 ,反比例函数 的图象的一支过 点,反比例函数 的图象的一支过 点,过 作 轴于 ,若 的面积为 .
(1)求 的值;
(2)求反比例函数 的解析式.
如图,已知 是 的直径,直线 与 相切于点 ,过点 作 交 于点 ,连接 .
(1)求证: 是 的切线.
(2)若 ,直径 ,求线段 的长.
如图,在 中, ,点 为 上一点,以 为直径的 交 于点 ,连接 ,且 平分 .
(1)求证: 是 的切线;
(2)连接 ,若 ,求 .
(1)如图1,将矩形 折叠,使 落在对角线 上,折痕为 ,点 落在点 处,若 ,则 的度数为 .
(2)小明手中有一张矩形纸片 , , .
【画一画】
如图2,点 在这张矩形纸片的边 上,将纸片折叠,使 落在 所在直线上,折痕设为 (点 , 分别在边 , 上),利用直尺和圆规画出折痕 (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
【算一算】
如图3,点 在这张矩形纸片的边 上,将纸片折叠,使 落在射线 上,折痕为 ,点 , 分别落在点 , 处,若 ,求 的长;
【验一验】
如图4,点 在这张矩形纸片的边 上, ,将纸片折叠,使 落在 所在直线上,折痕为 ,点 , 分别落在点 , 处,小明认为 所在直线恰好经过点 ,他的判断是否正确,请说明理由.
如图1,平行四边形 中, , , ,点 在边 上运动,以 为圆心, 为半径的 与对角线 交于 , 两点.
(1)如图2,当 与边 相切于点 时,求 的长;
(2)不难发现,当 与边 相切时, 与平行四边形 的边有三个公共点,随着 的变化, 与平行四边形 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的 的值的取值范围 .
如图,一次函数 的图象与 轴, 轴分别交于 , 两点,过点 作直线 与 垂直,点 在直线 位于 轴上方的部分.
(1)求一次函数 的表达式;
(2)若 的面积为11,求点 的坐标;
(3)当 时,点 的坐标为 .
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).