如图,已知 AB 是 ⊙ O 的直径,直线 BC 与 ⊙ O 相切于点 B ,过点 A 作 AD / / OC 交 ⊙ O 于点 D ,连接 CD .
(1)求证: CD 是 ⊙ O 的切线.
(2)若 AD = 4 ,直径 AB = 12 ,求线段 BC 的长.
如图,二次函数()的图象经过点(0,3),且当x=1时,y有最小值2. (1)求a,b,c的值; (2)设二次函数(k为实数),它的图象的顶点为D. ①当k=1时,求二次函数的图象与x轴的交点坐标; ②请在二次函数与的图象上各找出一个点M,N,不论k取何值,这两个点始终关于x轴对称,直接写出点M,N的坐标(点M在点N的上方); ③过点M的一次函数的图象与二次函数的图象交于另一点P,当k为何值时,点D在∠NMP的平分线上? ④当k取﹣2,﹣1,0,1,2时,通过计算,得到对应的抛物线的顶点分别为(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),请问:顶点的横、纵坐标是变量吗?纵坐标是如何随横坐标的变化而变化的?
【发现】 如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①) 【思考】 如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗? 请证明点D也不在⊙O内. 【应用】 利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE. (1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线; (2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的长.
某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上). (1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法); (2)求小明原来的速度.
如图,点M(﹣3,m)是一次函数与反比例函数()的图象的一个交点. (1)求反比例函数表达式; (2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称. ①当a=4时,求△ABC′的面积; ②当a的值为时,△AMC与△AMC′的面积相等.
某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).