如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图,已知点 是以 为直径的半圆上一点, 是 延长线上一点,过点 作 的垂线交 的延长线于点 ,连结 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
如图, 是 的直径,过点 作 的切线 ,点 是射线 上的动点,连接 ,过点 作 ,交 于点 ,连接 .
(1)求证: 是 的切线;
(2)当四边形 是平行四边形时,求 的度数.
如图,在 中, , 与 , 分别相切于点 , , 平分 ,连接 .
(1)求证: 是 的切线;
(2)若 , 的半径是1,求图中阴影部分的面积.
如图,在 中, , 与 相交于点 ,与 相交于点 ,连接 ,已知 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,在 中, ,以 为直径的 与 相交于点 , ,垂足为 .
(1)求证: 是 的切线;
(2)若弦 垂直于 ,垂足为 , , ,求 的半径;
(3)在(2)的条件下,当 时,求线段 的长.
如图, 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为 为 的整数),过点 作 的切线交 延长线于点 .
(1)通过计算比较直径和劣弧 长度哪个更长;
(2)连接 ,则 和 有什么特殊位置关系?请简要说明理由;
(3)求切线长 的值.
如图, 是以 为直径的 的切线,切点为 ,过点 作 ,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图, 与等边 的边 , 分别交于点 , , 是直径,过点 作 于点 .
(1)求证: 是 的切线;
(2)连接 ,当 是 的切线时,求 的半径 与等边 的边长 之间的数量关系.
古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图, 中, , , ,点O在线段 上,且 ,以O为圆心. 为半径的 交线段AO于点D,交线段AO的延长线于点E.
(1)求证: 是 的切线;
(2)研究过短中,小明同学发现 ,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.
如图,在 中, , ,点C是 的中点,以OC为半径作 .
(1)求证: 是 的切线;
(2)若 ,求 的长.
如图,在 中, ,以 为直径的 分别交 、 于点 、 ,点 在 的延长线上,且 .
(1)求证: 是 的切线;
(2)若 的直径为4, ,求 .
如图,在 中, ,以 的边 为直径作 ,交 于点 ,过点 作 ,垂足为点 .
(1)试证明 是 的切线;
(2)若 的半径为5, ,求此时 的长.
如图,点 在以 为直径的 上,点 是半圆 的中点,连接 , , , .过点 作 交 的延长线于点 .
(1)求证:直线 是 的切线;
(2)若 , ,求 , 的长.