如图,已知点 C 是以 AB 为直径的半圆上一点, D 是 AB 延长线上一点,过点 D 作 BD 的垂线交 AC 的延长线于点 E ,连结 CD ,且 CD = ED .
(1)求证: CD 是 ⊙ O 的切线;
(2)若 tan ∠ DCE = 2 , BD = 1 ,求 ⊙ O 的半径.
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.
为实现区域教育均衡发展,我市计划对某县、两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所类学校和两所类学校共需资金230万元;改造两所类学校和一所类学校共需资金205万元.(1)改造一所类学校和一所类学校所需的资金分别是多少万元?(2)若该县的类学校不超过5所,则类学校至少有多少所?(3)我市计划今年对该县、两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到、两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
已知:如图,在平面直角坐标系中,直线AB分别与轴交于点B、A,与反比例函数的图象分别交于点C、D,轴于点E,.(1)求该反比例函数的解析式;(2)求直线AB的解析式.
某区从参加初中八年级数学调研考试的8000名学生成绩中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到表二.请根据表一、表二所提供的信息,回答下列问题:(1)样本中,学生数学成绩平均分约为 分(结果精确到0.1);(2)样本中,数学成绩在84≤x<96分数段的频数为 ,等级为A的人数占抽样学生总数的百分比为 ,中位数所在的分数段为 ;
如图所示,是等边三角形, 点是的中点,延长到,使,过点作,垂足是.求证: