如图, AB 是 ⊙ O 的直径, AM 和 BN 是它的两条切线,过 ⊙ O 上一点 E 作直线 DC ,分别交 AM 、 BN 于点 D 、 C ,且 DA = DE .
(1)求证:直线 CD 是 ⊙ O 的切线;
(2)求证: O A 2 = DE · CE .
如图,在平面直角坐标系内,梯形OABC的顶点坐标分别是:A(3,4),B(8,4),C(11,0),点P(t,0)是线段OC上一点,设四边形ABCP的面积为S. (1)过点B作BE⊥x轴于点E,则BE= ,用含t的代数式表示PC= . (2)求S与t的函数关系. (3)当S=20时,直接写出线段AB与CP的长.
甲、乙两同学在一次百米赛跑中,路程S(米)与时间t(秒)之间的关系如图所示.根据图象回答下列问题:(1)3.8秒时,哪位同学处于领先位置?(2)在这次赛跑中,哪位同学先到达终点?比另一个同学早多少时间到达?约几秒后哪位同学被哪位同学追上?(3)甲同学所走的路程S(米)与时间t(秒)之间的函数关系式.
先化简再求值:,其中:,.
如图,求图中直线的函数表达式:
如图,直线l的解析式为,它与坐标轴分别交于A、B两点,其中B坐标为(0,4).(1)求出A点的坐标;(2)若点 P在y轴上,且到直线l的距离为3,试求点P的坐标;(3)在第一象限的角平分线上是否存在点Q使得∠QBA=90°;若存在,求点Q的坐标,若不存在,请说明理由.(4)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C运动所有的时间t,使得△ABC为轴对称图形.