如图,一次函数 y 1 = kx + b ( k ≠ 0 ) 与反比例函数 y 2 = m x ( m ≠ 0 ) 的图象交于
点 A ( 1 , 2 ) 和 B ( - 2 , a ) ,与 y 轴交于点 M .
(1)求一次函数和反比例函数的解析式;
(2)在 y 轴上取一点 N ,当 ΔAMN 的面积为3时,求点 N 的坐标;
(3)将直线 y 1 向下平移2个单位后得到直线 y 3 ,当函数值 y 1 > y 2 > y 3 时,求 x 的取值范围.
如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.
如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=,求劣弧的长.
某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?
先化简,后求值:,其中是方程的根.
解不等式组,并将它的解集在数轴上表示出来.