某班组织一次数学测试,全班学生成绩的分布情况如下图:(1)全班学生数学成绩的众数是 分,全班学生数学成绩为众数的有 人.(2)全班学生数学成绩的中位数是 分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.
如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.求证:DA=DE;如果AF∥CD,求证:四边形ADEF是菱形.
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
如图,已知点A(−3,5)在抛物线y=x2+c的图象上,点P从抛物线的顶点Q出发,沿y轴以每秒1个单位的速度向正方向运动,连结AP并延长,交抛物线于点B,分别过点A、B作x轴的垂线,垂足为C、D,连结AQ、BQ. 求抛物线的解析式; 当A、Q、B三点构成以AQ为直角边的直角三角形时,求点P离开点Q多少时间? 试探索当AP、AC、BP、BD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)时,点P离开点Q的时刻.
如图,将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的解析为:y = − x + 4.点C的坐标是( ▲ , ▲ )若将□OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P,求△OBP的面积;在(2)的情形下,若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分面积为S,试写出S关于x的函数关系式,并求出S的最大值.
如图,已知矩形ABCD中,AB=10,AD=4,点E为CD边上的一个动点,连结AE、BE,以AE为直径作圆,交AB于点F,过点F作FH⊥BE于H,直线FH交⊙O于点G.求证:⊙O必经过点D;若点E运动到CD的中点,试证明:此时FH为⊙O的切线;当点E运动到某处时,AE∥FH,求此时GF的长.