如图,以 的直角边 为直径作 交斜边 于点 ,过圆心 作 ,交 于点 ,连接 .
(1)判断 与 的位置关系并说明理由;
(2)求证: ;
(3)若 , ,求 的长.
已知:如图,以等边 的边 为直径作 ,分别交 , 于点 , ,过点 作 交 于点 .
(1)求证: 是 的切线;
(2)若等边 的边长为8,求由 、 、 围成的阴影部分面积.
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 , 的 分别交 , 于点 , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)设 , ,试用含 , 的代数式表示线段 的长;
(3)若 , ,求 的长,
如图, 是半圆的直径, 为弦,过点 作直线 交 的延长线于点 .若 , .
(1)求证:直线 与半圆相切;
(2)若 ,求 的长.
如图, 是 的直径,点 在 的延长线上, 平分 交 于点 ,且 ,垂足为点 .
(1)求证:直线 是 的切线.
(2)若 , ,求弦 的长.
如图, 是 的直径,点 , 在 上, ,点 在 的延长线上, .
(1)求证: 是 的切线;
(2)若 , ,求 的半径长.
如图, 中,以 为直径的 交 于点 , 平分 交 于点 ,交 于点 .且 .
(1)求证:直线 是 的切线;
(2)若 ,求 的值.
如图,已知抛物线 的图象的顶点坐标是 ,并且经过点 ,直线 与抛物线交于 , 两点,以 为直径作圆,圆心为点 ,圆 与直线 交于对称轴右侧的点 ,直线 上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆 与 轴相切;
(3)过点 作 ,垂足为 ,再过点 作 ,垂足为 ,求 的值.
如图, 中, ,以 为直径的 交 于点 ,交 于点 ,过点 作 于点 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)已知 , ,求 和 的长.
如图, 是 的直径, 和 是 的两条切线, 为 上一点,过点 作直线 分别交 , 于点 , ,且 .
(1)求证: ;
(2)若 , ,求图中阴影部分的面积.
如图,以 的边 为直径的 恰为 的外接圆, 的平分线交 于点 ,过点 作 交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图, 是 的切线, 是切点, 是直径, 是弦,连接 、 , 交 于点 ,且 .
(1)求证: 是 的切线;
(2)若 ,求 的值.
如图,已知 为 的直径, 、 是 的弦, 是 的切线,切点为 , , 、 的延长线相交于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
阅读理解:在平面直角坐标系中,若两点 、 的坐标分别是 , 、
, ,则 、 这两点间的距离为 .如 , ,则 .
对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.
解决问题:如图,已知在平面直角坐标系 中,直线 交 轴于点 ,点 关于 轴的对称点为点 ,过点 作直线 平行于 轴.
(1)到点 的距离等于线段 长度的点的轨迹是 ;
(2)若动点 满足到直线 的距离等于线段 的长度,求动点 轨迹的函数表达式;
问题拓展:(3)若(2)中的动点 的轨迹与直线 交于 、 两点,分别过 、 作直线 的垂线,垂足分别是 、 ,求证:
① 是 外接圆的切线;
② 为定值.