如图,以 Rt Δ ABC 的直角边 AB 为直径作 ⊙ O 交斜边 AC 于点 D ,过圆心 O 作 OE / / AC ,交 BC 于点 E ,连接 DE .
(1)判断 DE 与 ⊙ O 的位置关系并说明理由;
(2)求证: 2 D E 2 = CD · OE ;
(3)若 tan C = 4 3 , DE = 5 2 ,求 AD 的长.
为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊. (1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施? (2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中).则每户平均集资的资金在150元的基础上减少了%,求a的值.
为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整. (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.
先化简,再求值:,其中x的值为方程的解.
如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12.tan∠BAD=,求sinC的值.
如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S. (1)当时,求S的值. (2)求S关于的函数解析式. (3)①若S=时,求的值; ②当m>2时,设,猜想k与m的数量关系并证明.