如图,以 Rt Δ ABC 的直角边 AB 为直径作 ⊙ O 交斜边 AC 于点 D ,过圆心 O 作 OE / / AC ,交 BC 于点 E ,连接 DE .
(1)判断 DE 与 ⊙ O 的位置关系并说明理由;
(2)求证: 2 D E 2 = CD · OE ;
(3)若 tan C = 4 3 , DE = 5 2 ,求 AD 的长.
乡村振兴使人民有更舒适的居住条件,更优美的生活环境,如图是怡佳新村中的两栋居民楼,小明在甲居民楼的楼顶 D 处观测乙居民楼楼底 B 处的俯角是 30 ° ,观测乙居民楼楼顶 C 处的仰角为 15 ° ,已知甲居民楼的高为 10 m ,求乙居民楼的高.(参考数据: 2 ≈ 1 . 414 , 3 ≈ 1 . 732 ,结果精确到 0 . 1 m )
九(1)班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成如下不完整的统计图表,请根据统计图表中的信息解答下列问题:
平均数
中位数
众数
方差
甲
175
a
b
93.75
乙
180,175,170
c
(1)求 a 、 b 的值;
(2)若九(1)班选一位成绩稳定的选手参赛,你认为应选谁,请说明理由;
(3)根据以上的数据分析,请你运用所学统计知识,任选两个角度评价甲乙两名男生一分钟跳绳成绩谁优.
如图,矩形 ABCD 的对角线 AC , BD 交于点 O ,且 DE / / AC , AE / / BD ,连接 OE .求证: OE ⊥ AD .
先化简,再求值: 1 - a - 2 a + 4 ÷ a 2 - 4 a 2 + 8 a + 16 ,其中 a = 2 - 2 .
如图,直线 y = - 3 2 x + 6 与 x 轴交于点 B ,与 y 轴交于点 A ,点 P 为线段 AB 的中点,点 Q 是线段 OA 上一动点(不与点 O 、 A 重合).
(1)请直接写出点 A 、点 B 、点 P 的坐标;
(2)连接 PQ ,在第一象限内将 ΔOPQ 沿 PQ 翻折得到 ΔEPQ ,点 O 的对应点为点 E .若 ∠ OQE = 90 ° ,求线段 AQ 的长;
(3)在(2)的条件下,设抛物线 y = a x 2 - 2 a 2 x + a 3 + a + 1 ( a ≠ 0 ) 的顶点为点 C .
①若点 C 在 ΔPQE 内部(不包括边),求 a 的取值范围;
②在平面直角坐标系内是否存在点 C ,使 | CQ - CE | 最大?若存在,请直接写出点 C 的坐标;若不存在,请说明理由.