如图,点 E 在正方形 ABCD 边 AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF 交 AC 于点 G , GH ⊥ AD 于点 H , AB = 1 , DE = 1 3 .
(1)求 tan ∠ ACE ;
(2)设 AF = x , GH = y ,试探究 y 与 x 的函数关系式(写出 x 的取值范围);
(3)当 ∠ ADF = ∠ ACE 时,判断 EG 与 AC 的位置关系并说明理由.
已知:在△ABC中,∠B为锐角,,AB=15,AC=13,求BC的长.
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,tanC=.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=CF=8. (1)求∠BDF的度数; (2)求AB的长.
如图,一枚运载火箭从地面O处发射,当火箭到达A点时,在观测点C测得其仰角是30°,火箭又上升了10km到达B点时,测得其仰角为60°,求观测点C到发射点O的距离. (结果精确到0.1km.参考数据:).
已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B. (1)求证:△ABE∽△DEA; (2)若AB=4,求AE•DE的值.
已知:如图,在△ABC中,∠A=30°,tanB=,AC=18,求:BC、AB的长.