如图, AB 为 ⊙ O 的直径, C 为 ⊙ O 上一点, AD ⊥ CE ,垂足为 D , AC 平分 ∠ DAB .
(1)求证: CE 是 ⊙ O 的切线;
(2)若 AD = 4 , cos ∠ CAB = 4 5 ,求 AB 的长.
某汽车在刹车后行驶的距离s(单位:m)与时间t(单位:s)之间的关系得部分数据如下表:
假设这种变化规律一直延续到汽车停止. (1)根据这些数据在给出的坐标系中画出相应的点; (2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式; (3)刹车后汽车行驶了多长距离才停止?
商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答: (1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示); (2)在上述条件不变的情况下,每件商品降价多少元时,商场日盈利可达到2100元?
如图,点、、是⊙O上的三点,. (1)求证:平分; (2)过点作于点,交于点. 若,,求的长.
如图,在□中,、为BC边上两点,且,. 求证:(1)△≌△; (2)四边形是矩形.
已知关于x的方程. (1)若这个方程有实数根,求k的取值范围; (2)若这个方程有一个根为1,求k的值.