如图,一次函数 y = kx + b ( k ≠ 0 ) 的图象与 x 轴, y 轴分别交于 A ( − 9 , 0 ) , B ( 0 , 6 ) 两点,过点 C ( 2 , 0 ) 作直线 l 与 BC 垂直,点 E 在直线 l 位于 x 轴上方的部分.
(1)求一次函数 y = kx + b ( k ≠ 0 ) 的表达式;
(2)若 ΔACE 的面积为11,求点 E 的坐标;
(3)当 ∠ CBE = ∠ ABO 时,点 E 的坐标为 ( 11 , 3 ) .
已知:二次函数(m为常数). (1)若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上. ①求m的值; ②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式; (2)当0≤≤2时,求函数的最小值(用含m的代数式表示).
如图,在Rt△ABC中∠ABC=90°,BA=BC,P在△ABC的内部,且∠APB=135°,PA:PC=1:3,求PA:PB
设二次函数的图象为C1.二次函数的图象与C1关于y轴对称. (1)求二次函数的解析式; (2)当≤0时,直接写出的取值范围; (3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数( k,m为常数,k≠0)的图象经过A,B两点,当时,直接写出x的取值范围.
已知二次函数. (1)若点与在此二次函数的图象上,则(填 “>”、“=”或“<”); (2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点. (1)求证:DE为⊙O的切线; (2)若DE=3,AC=8,求直径AB的长.