如图,在菱形 ABCD 中, AC 与 BD 交于点 O , E 是 BD 上一点, EF / / AB , ∠ EAB = ∠ EBA ,过点 B 作 DA 的垂线,交 DA 的延长线于点 G .
(1) ∠ DEF 和 ∠ AEF 是否相等?若相等,请证明;若不相等,请说明理由;
(2)找出图中与 ΔAGB 相似的三角形,并证明;
(3) BF 的延长线交 CD 的延长线于点 H ,交 AC 于点 M .求证: B M 2 = MF · MH .
南宁市五象新区有长24000m的新建道路要铺上沥青. (1)写出铺路所需时间t(天)与铺路速度v(m/天)的函数关系式. (2)负责铺路的工程公司现有的铺路机每天最多能铺路400m,预计最快多少天可以完成铺路任务? (3)为加快工程进度,公司决定投入不超过400万元的资金,购进10台更先进的铺路机.现有甲、乙两种机器可供选择,其中每种机器的价格和日铺路能力如下表.在原有的铺路机连续铺路40天后,新购进的10台机器加入铺路,公司要求至少比原来预计的时间提前10天完成任务.问有哪几种方案?请你通过计算说明选择哪种方案所用资金最少.
某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:
(1)该校下学期七年级班主任老师年龄的众数是多少? (2)在图7(1)中,将反映老师学历情况的条形统计图补充完整; (3)在图7(2)中,标注扇形统计图中表示老师职称为初级和高级的百分比; (4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?
观察下列算式: ①1 × 3 - 22 =" 3" - 4 = -1 ② 2 × 4 - 32 =" 8" - 9 = -1 ③ 3 × 5 - 42 =" 15" - 16 = -1 ④ …… (1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来; (3)你认为(2)中所写出的式子一定成立吗?并说明理由.
若△ABC和△ADE均为等边三角形,M、N分别是BE、CD的中点. (1)当△ADE绕A点旋转到如图①的位置时,求证:CD=BE,△AMN是等边三角形; (2) 如图②,当∠EAB=30°,AB=12,AD=时,求AM的长.
已知:如图,直线y =+1与x轴、y轴的交点 分别是A和B,把线段AB绕点A顺时针旋转90°得 线段AB'. ⑴ 在图中画出△ABB',并直接写出点A和点B' 的坐标; ⑵ 求直线AB'表示的函数关系式; ⑶ 若动点C(1,a)使得S△ABC=S△ABB', 求a的值.