如图,在菱形 ABCD 中, AC 与 BD 交于点 O , E 是 BD 上一点, EF / / AB , ∠ EAB = ∠ EBA ,过点 B 作 DA 的垂线,交 DA 的延长线于点 G .
(1) ∠ DEF 和 ∠ AEF 是否相等?若相等,请证明;若不相等,请说明理由;
(2)找出图中与 ΔAGB 相似的三角形,并证明;
(3) BF 的延长线交 CD 的延长线于点 H ,交 AC 于点 M .求证: B M 2 = MF · MH .
阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=________,b=________;(2)利用所探索的结论,找一组正整数a、b、m、n,填空:________+________=(______+______)2;(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值.
如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距。当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D=________,O2F=________.(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2=________.(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).
如图是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站.甲乘1路车,路线是B—A—E—F;乙乘2路车,路线是B—D—C—F.假设两车速度相同,途中耽误时间相同,那么谁先到达F站?请说明理由.
如图,在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,且DE=EB=5,请用割补(旋转图形)的方法求四边形ABCD的面积.
在某中学举行的电脑知识竞赛中,将参赛学生的成绩(得分均为整数)进行整理后分成五组,绘制出频数分布直方图,已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频数分布直方图;(2)求参赛的学生的优秀率(成绩≥80为优秀)和及格率(成绩≥60为及格);(3)参赛学生成绩的中位数应落在第几小组内?(不必说明理由)(4)请你评价一下这次竞赛的成绩.