如图,在矩形 ABCD 中,对角线相交于点 O , ⊙ M 为 ΔBCD 的内切圆,切点分别为 N , P , Q , DN = 4 , BN = 6 .
(1)求 BC , CD ;
(2)点 H 从点 A 出发,沿线段 AD 向点 D 以每秒3个单位长度的速度运动,当点 H 运动到点 D 时停止,过点 H 作 HI / / BD 交 AC 于点 I ,设运动时间为 t 秒.
①将 ΔAHI 沿 AC 翻折得△ AH ' I ,是否存在时刻 t ,使点 H ' 恰好落在边 BC 上?若存在,求 t 的值;若不存在,请说明理由;
②若点 F 为线段 CD 上的动点,当 ΔOFH 为正三角形时,求 t 的值.
某一空间图形的三视图如右图所示, 其中主视图:半径为1的半圆以及高为1的矩形; 左视图:半径为1的圆以及高为1的矩形; 俯视图:半径为1的圆. 求此图形的体积.
某足球联赛记分规则为胜一场积3分, 平一场积1分, 负一场积0分. 当比赛进行到14轮结束时, 甲队积分28分. 判断甲队胜, 平, 负各几场, 并说明理由.
某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
(1)请写出y关于x的关系式; (2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元? (3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?
解方程:.
解不等式组