如图,在 ΔABC 中, ∠ A = 90 ° , AB = 3 , AC = 4 ,点 M , Q 分别是边 AB , BC 上的动点(点 M 不与 A , B 重合),且 MQ ⊥ BC ,过点 M 作 BC 的平行线 MN ,交 AC 于点 N ,连接 NQ ,设 BQ 为 x .
(1)试说明不论 x 为何值时,总有 ΔQBM ∽ ΔABC ;
(2)是否存在一点 Q ,使得四边形 BMNQ 为平行四边形,试说明理由;
(3)当 x 为何值时,四边形 BMNQ 的面积最大,并求出最大值.
如图,已知AC∥DE且AC=DE,AD,CE交于点B,AF,DG分别是△ABC,△BDE的中线,求证:四边形AGDF是平行四边形.
如图,已知ABCD,E,F是对角线BD所在直线上的两点,且AE∥CF,求证:CE∥AF.
如图,已知ABCD,E, F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.
下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形,使所得的新图形分别为下列A,B,C题要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.
已知:如图所示,△ABC与△ADE是成中心对称的两个三角形,点A是对称中心.求证:BC∥DE.