如图,在 ΔABC 中, ∠ A = 90 ° , AB = 3 , AC = 4 ,点 M , Q 分别是边 AB , BC 上的动点(点 M 不与 A , B 重合),且 MQ ⊥ BC ,过点 M 作 BC 的平行线 MN ,交 AC 于点 N ,连接 NQ ,设 BQ 为 x .
(1)试说明不论 x 为何值时,总有 ΔQBM ∽ ΔABC ;
(2)是否存在一点 Q ,使得四边形 BMNQ 为平行四边形,试说明理由;
(3)当 x 为何值时,四边形 BMNQ 的面积最大,并求出最大值.
如图,画一个两条直角边相等的Rt△ABC,并过斜边BC上一点D作射线AD,再分别过B、C作射线AD的垂线BE和CF,垂足分别为E、F,量出BE、CF、EF的长,改变D的位置,再重复上面的操作,你是否发现BE、CF、EF的长度之间有某种关系?能说清其中的奥妙吗?
如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.
已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.
如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,求证:BD=EC+ED.
如图,AE是∠BAC的平分线,AB=AC。⑴若点D是AE上任意一点,则△ABD≌△ACD;⑵若点D是AE反向延长线上一点,结论还成立吗?试说明你的猜想。