首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 67

在平面直角坐标系中,已知抛物线 y = a x 2 + 4 ax + 4 a - 6 ( a > 0 ) x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,顶点为点 D

(1)当 a = 6 时,直接写出点 A B C D 的坐标:

A    B    C    D   

(2)如图1,直线 DC x 轴于点 E ,若 tan AED = 4 3 ,求 a 的值和 CE 的长;

(3)如图2,在(2)的条件下,若点 N OC 的中点,动点 P 在第三象限的抛物线上,过点 P x 轴的垂线,垂足为 Q ,交 AN 于点 F ;过点 F FH DE ,垂足为 H .设点 P 的横坐标为 t ,记 f = FP + FH

①用含 t 的代数式表示 f

②设 - 5 < t m ( m < 0 ) ,求 f 的最大值.

登录免费查看答案和解析

在平面直角坐标系中,已知抛物线yax24ax4a6(a<0)