初中数学

如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B C 都在第一象限, tan AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < α < AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) EF OC 交于点 G ,连接 AG

(1)求点 B 的坐标.

(2)当 OG = 4 时,求 AG 的长.

(3)求证: GA 平分 OGE

(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在 ΔABC 中, CD 为角平分线, A = 40 ° B = 60 ° ,求证: CD ΔABC 的完美分割线.

(2)在 ΔABC 中, A = 48 ° CD ΔABC 的完美分割线,且 ΔACD 为等腰三角形,求 ACB 的度数.

(3)如图2, ΔABC 中, AC = 2 BC = 2 CD ΔABC 的完美分割线,且 ΔACD 是以 CD 为底边的等腰三角形,求完美分割线 CD 的长.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 E BC 上一点, F DE 的中点,且 BFC = 90 °

(1)当 E BC 中点时,求证: ΔBCF ΔDEC

(2)当 BE = 2 EC 时,求 CD BC 的值;

(3)设 CE = 1 BE = n ,作点 C 关于 DE 的对称点 C ' ,连接 FC ' AF ,若点 C ' AF 的距离是 2 10 5 ,求 n 的值.

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 E BC 上一点, F DE 的中点,且 BFC = 90 °

(1)当 E BC 中点时,求证: ΔBCF ΔDEC

(2)当 BE = 2 EC 时,求 CD BC 的值;

(3)设 CE = 1 BE = n ,作点 C 关于 DE 的对称点 C ' ,连接 FC ' AF ,若点 C ' AF 的距离是 2 10 5 ,求 n 的值.

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为原点,点 A 的坐标为 ( 6 , 0 ) .如图1,正方形 OBCD 的顶点 B x 轴的负半轴上,点 C 在第二象限.现将正方形 OBCD 绕点 O 顺时针旋转角 α 得到正方形 OEFG

(1)如图2,若 α = 60 ° OE = OA ,求直线 EF 的函数表达式.

(2)若 α 为锐角, tan α = 1 2 ,当 AE 取得最小值时,求正方形 OEFG 的面积.

(3)当正方形 OEFG 的顶点 F 落在 y 轴上时,直线 AE 与直线 FG 相交于点 P ΔOEP 的其中两边之比能否为 2 : 1 ?若能,求点 P 的坐标;若不能,试说明理由

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:

请你根据上述定义举一个等邻角四边形的例子;

(2)问题探究:

如图1,在等邻角四边形 ABCD 中, DAB = ABC AD BC 的中垂线恰好交于 AB 边上一点 P ,连接 AC BD ,试探究 AC BD 的数量关系,并说明理由;

(3)应用拓展:

如图2,在 Rt Δ ABC Rt Δ ABD 中, C = D = 90 ° BC = BD = 3 AB = 5 ,将 Rt Δ ABD 绕着点 A 顺时针旋转角 α ( 0 ° < α < BAC ) 得到 Rt AB ' D ' (如图 3 ) ,当凸四边形 AD ' BC 为等邻角四边形时,求出它的面积.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

数学活动课上,某学习小组对有一内角为 120 ° 的平行四边形 ABCD ( BAD = 120 ° ) 进行探究:将一块含 60 ° 的直角三角板如图放置在平行四边形 ABCD 所在平面内旋转,且 60 ° 角的顶点始终与点 C 重合,较短的直角边和斜边所在的两直线分别交线段 AB AD 于点 E F (不包括线段的端点).

(1)初步尝试

如图1,若 AD = AB ,求证:① ΔBCE ΔACF ,② AE + AF = AC

(2)类比发现

如图2,若 AD = 2 AB ,过点 C CH AD 于点 H ,求证: AE = 2 FH

(3)深入探究

如图3,若 AD = 3 AB ,探究得: AE + 3 AF AC 的值为常数 t ,则 t =   

来源:2016年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D E 分别在边 AB AC 上, AED = B ,射线 AG 分别交线段 DE BC 于点 F G ,且 AD AC = DF CG

(1)求证: ΔADF ΔACG

(2)若 AD AC = 1 2 ,求 AF FG 的值.

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 °

(1)作出经过点 B ,圆心 O 在斜边 AB 上且与边 AC 相切于点 E O (要求:用尺规作图,保留作图痕迹,不写作法和证明)

(2)设(1)中所作的 O 与边 AB 交于异于点 B 的另外一点 D ,若 O 的直径为5, BC = 4 ;求 DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, AB 为圆 O 的直径, C 为圆 O 上一点, D BC 延长线一点,且 BC = CD CE AD 于点 E

(1)求证:直线 EC 为圆 O 的切线;

(2)设 BE 与圆 O 交于点 F AF 的延长线与 CE 交于点 P ,已知 PCF = CBF PC = 5 PF = 4 ,求 sin PEF 的值.

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,过 O 外一点 P O 的切线 PA O 于点 A ,连接 PO 并延长,与 O 交于 C D 两点, M 是半圆 CD 的中点,连接 AM CD 于点 N ,连接 AC CM

(1)求证: C M 2 = MN MA

(2)若 P = 30 ° PC = 2 ,求 CM 的长.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,以 Rt Δ ABC 的直角边 AB 为直径作 O 交斜边 AC 于点 D ,过圆心 O OE / / AC ,交 BC 于点 E ,连接 DE

(1)判断 DE O 的位置关系并说明理由;

(2)求证: 2 D E 2 = CD · OE

(3)若 tan C = 4 3 DE = 5 2 ,求 AD 的长.

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, C O 上一点,点 P 在直径 AB 的延长线上, O 的半径为3, PB = 2 PC = 4

(1)求证: PC O 的切线.

(2)求 tan CAB 的值.

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) B ( 0 , 4 ) C ( 3 , 0 ) .动点 M N 同时从 A 点出发, M 沿 A C N 沿折线 A B C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN

(1)求直线 BC 的解析式;

(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;

(3)当点 M N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题