如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B , C 都在第一象限, tan ∠ AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < ∠ α < ∠ AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) , EF 与 OC 交于点 G ,连接 AG .
(1)求点 B 的坐标.
(2)当 OG = 4 时,求 AG 的长.
(3)求证: GA 平分 ∠ OGE .
(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.
假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们从A点登陆后先往东走7千米,又往北走4千米,遇到障碍后又往西走了3千米,再折向北走了8千米处往东一拐,仅走了1千米就找到宝藏点B,问登陆点A到宝藏埋藏点B的距离是多少千米?
解方程:
先化筒,然后从-4<x<4之间的整数中,选取一个你认为合适的x的值代入求值。
已知:A(a,y1)、B(2a,y2)是反比例函数图像上的两点. (1)比较y1与y2的大小关系; (2)若A、B两点在一次函数第一象限的图像上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,且S△OAB=8,求a的值; (3)在(2)的条件下,如果,,求使得m>n的x的取值范围.
正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC是格点三角形,小正方形网格的边长为1(单位长度). (1) △ABC的面积是(平方单位); (2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等; (3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.