如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B , C 都在第一象限, tan ∠ AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < ∠ α < ∠ AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) , EF 与 OC 交于点 G ,连接 AG .
(1)求点 B 的坐标.
(2)当 OG = 4 时,求 AG 的长.
(3)求证: GA 平分 ∠ OGE .
(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.
已知反比例函数和一次函数y=-x+a-1(a为常数) (1)当a=5时,求反比例函数与一次函数的交点坐标 (2)是否存在实数a,使反比例函数与一次函数有且只有一个交点,如果存在,求出实数a,如果不存在,说明理由
小明想利用太阳光测量楼高。他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F, (1)求证:ΔABF ∽ΔACE (2)求证:ΔAEF ∽ΔACB (3)若∠A=60, 求:
小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB长是多少m。
如图,已知菱形AMNP内接于△ABC,M、N、P分别在AB、BC、AC上,如果AB=21 cm,CA=15cm,求菱形AMNP的周长.