如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B , C 都在第一象限, tan ∠ AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < ∠ α < ∠ AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) , EF 与 OC 交于点 G ,连接 AG .
(1)求点 B 的坐标.
(2)当 OG = 4 时,求 AG 的长.
(3)求证: GA 平分 ∠ OGE .
(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.
计算(每小题6分,共12分)(1); (2) .
如图8,在△ABC中,∠A=50°,∠C=65°,AB=12,BC=10,DE垂直平分AB交AC、AB于E、D两点.求:(1)∠EBC的度数;(2)△BCE的周长.
在一个不透明的盒子里装有除颜色外完全相同的黑、白两种球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)将数据表补充完整;(2)请你估计: 随着实验次数的增加,摸到白球的频率特点是 ,这个频率将会接近 (精确到0.1);(3)假如你摸一次,你摸到白球的机会是 ;(4)试估算盒子里黑、白两种颜色的球各有多少个?
如图7,在△ABC中,∠BAC=75°,AD、BE分别是BC、AC边上的高,AD=BD,求∠C和∠AFB的度数.
(9分)图6.1、6.2、6.3均为4×4的正方形网格,每个小正方形的边长均为1.请分别在这三个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.