数学活动课上,某学习小组对有一内角为 120 ° 的平行四边形 ABCD ( ∠ BAD = 120 ° ) 进行探究:将一块含 60 ° 的直角三角板如图放置在平行四边形 ABCD 所在平面内旋转,且 60 ° 角的顶点始终与点 C 重合,较短的直角边和斜边所在的两直线分别交线段 AB , AD 于点 E , F (不包括线段的端点).
(1)初步尝试
如图1,若 AD = AB ,求证:① ΔBCE ≅ ΔACF ,② AE + AF = AC ;
(2)类比发现
如图2,若 AD = 2 AB ,过点 C 作 CH ⊥ AD 于点 H ,求证: AE = 2 FH ;
(3)深入探究
如图3,若 AD = 3 AB ,探究得: AE + 3 AF AC 的值为常数 t ,则 t = .
若关于x的方程(k-1)x2-2kx+k+3=0有两个实数根,求k的取值范围。
解下列方程: (1)(配方法)(2)-4x-12=0(公式法) (3).(4)
如图,AB是⊙O的直径,E是⊙O上的一点,BE的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数。
先化简,再求值:,其中
计算: (1)(2)