如图①,在四边形 中, 于点 , ,点 为 中点, 为线段 上的点,且 .
(1)求证: 平分 ;
(2)若 ,连接 ,当四边形 为平行四边形时,求线段 的长;
(3)如图②,若点 为 的中点,连接 、 ,求证: .
如图,已知 , 是 的直径,过点 作 的切线交 的延长线于点 , 的弦 交 于点 ,且 .
(1)求证: ;
(2)连接 交 于点 ,过点 作 于点 ,若 , ,求 的长.
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点,交 轴于点 , , ,直线 过点 ,交 轴于点 ,交抛物线于点 ,且满足 .
(1)求抛物线的解析式;
(2)动点 从点 出发,沿 轴正方向以每秒2个单位长度的速度向点 运动,动点 从点 出发,沿射线 以每秒1个单位长度的速度向点 运动,当点 运动到点 时,点 也停止运动,设运动时间为 秒.
①在 、 的运动过程中,是否存在某一时刻 ,使得 与 相似,若存在,求出 的值;若不存在,请说明理由.
②在 、 的运动过程中,是否存在某一时刻 ,使得 与 的面积之和最大?若存在,求出 的值;若不存在,请说明理由.
已知 中, ,点 、 分别在 、 边上,连接 、 交于点 ,设 , , 为常数,试探究 的度数:
(1)如图1,若 ,则 的度数为 ;
(2)如图2,若 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 的度数.
(3)如图3,若 ,且 、 分别在 、 的延长线上,(2)中的结论是否成立,请说明理由.
如图, 是 外的一点, 、 是 的两条切线, 、 是切点, 交 于点 ,延长 交 于点 ,交 的延长交于点 ,连接 .
(1)求证: ;
(2)设 为 的中点, 交 于点 ,若 的半径为3, ,求 的值.
如图1, 是 的直径 上的一点,过 作 交 于 、 , 是 上的一点,过 的直线分别与 、 的延长线相交于 、 ,连接 交 于 , .
(1)求证: 是 的切线;
(2)若 , 的半径为4, ,求 的长;
(3)如图2,在(2)的条件下,连接 、 ;在线段 上有一点 ,并且以 、 、 为顶点的三角形与 相似,求 的长度.
如图, 是 的外接圆 的直径,点 在 延长线上,且满足 .
(1)求证: 是 的切线;
(2)弦 交 于点 ,若 ,求 的长.
如图,在直角三角形 中, ,点 是 的内心,
的延长线和三角形 的外接圆 相交于点 ,连接 .
(1)求证: ;
(2)过点 作 的平行线交 、 的延长线分别于点 、 ,已知 ,圆 的直径为5.
①求证: 为圆 的切线;
②求 的长.
矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 , 的 分别交 , 于点 , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)设 , ,试用含 , 的代数式表示线段 的长;
(3)若 , ,求 的长,
在 中, , 是 上一点,连接 ,作 ,使 ,且 ,过点 作 交 于 ,连接 .
(1)如图1.
①连接 ,求证:
②若 是线段 的中点,且 , ,求 的长;
(2)如图2,若点 在线段 的延长线上,且四边形 是矩形,当 , 时,求 的长(用含 , 的代数式表示).
如图, 是 的直径,点 在 的延长线上, 平分 交 于点 ,且 ,垂足为点 .
(1)求证:直线 是 的切线.
(2)若 , ,求弦 的长.
如图, 是 的直径,点 , 在 上, ,点 在 的延长线上, .
(1)求证: 是 的切线;
(2)若 , ,求 的半径长.
如图, 是 的直径,点 在 上,连接 、 ,直线 与 的延长线相交于点 , , 交直线 于点 , 与 相交于点 .
(1)求证:直线 是 的切线;
(2)若 的半径为3, ,求 的长.