如图,已知 AB , CD 是 ⊙ O 的直径,过点 C 作 ⊙ O 的切线交 AB 的延长线于点 P , ⊙ O 的弦 DE 交 AB 于点 F ,且 DF = EF .
(1)求证: C O 2 = OF · OP ;
(2)连接 EB 交 CD 于点 G ,过点 G 作 GH ⊥ AB 于点 H ,若 PC = 4 2 , PB = 4 ,求 GH 的长.
如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°. (1)判断△ABC的形状: ; (2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论; (3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
(本小题满分9分) 如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD. (1)求证:AD平分∠BAC; (2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
(本小题满分9分) 如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D. (1)求弧BC的长; (2)求弦BD的长.
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D. (1)求线段AD的长度; (2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.
(本小题满分11分) 如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE. (1)请判断:AF与BE的数量关系是 ,位置关系是 ; (2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明; (3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.