如图某文具店王经理统计了2019年1月至5月 A , B , C 这三种型号的钢笔平均每月的销售量,并绘制图1(不完整).销售这三种型号钢笔平均每月获得的总利润为 600 元,每种型号钢笔获得的利润分布情况如图2,已知 A , B , C 这三种型号钢笔每支的利润分别是 0 . 5 元, 0 . 6 元, 1 . 2 元,请你结合图中的信息,解答下列问题:
(1)求出 C 种型号钢笔平均每月的销售量,并将图1补充完整;
(2)王经理计划6月份购进 A , B , C 这三种型号的笔共 900 支,请你结合1月至5月平均每月的销售情况(不考虑其它因素),设计一个方案,使获得的利润最大,并说明理由.
如图,线段BE上有一点C,以BC、CE为边分别在BE的同侧作等边三角形ABC、DCE,连结AE、BD,分别交CD、CA于Q、P.(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由.(2)取AE的中点M、BD的中点N,连结MN,试判断△CMN的形状.
在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.
如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角平分线交于A1. (1)当∠A为70°时,∠A1= °; (2)如图2,∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4,请写出∠A与∠A4的数量关系 ; (3)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,试求∠Q与∠A1的数量关系.
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.
直线l1平行于直线l2,直线l3、l4分别与l1、l2交于点B、F和A、E,点D是直线l3上一动点,DC∥AB交l4于点C.(1)如图,当点D在l1、l2两线之间运动时,试找出∠BAD、∠DEF、∠ADE之间的关系,并说明理由;(2)当点D在l1、l2两线外侧运动时,试探究∠BAD、∠DEF、∠ADE之间的关系(点D和B、F不重合),画出图形,给出结论,不必说明理由.