《中学生体质健康标准》规定学生体质健康等级标准为: 86 分及以上为优秀; 76 分~ 85 分为良好; 60 分~ 75 分为及格; 59 分以下为不及格.某校抽取八年级学生人数的 10 % 进行体质测试,测试结果如图.
(1)在抽取的学生中不及格人数所占的百分比是_____;
(2)小明按以下方法计算所抽取学生测试结果的平均分是 90 + 82 + 65 + 40 ÷ 4 = 69 . 25 .根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;
(3)若抽取的学生中不及格学生的总分恰好等于某一个良好等级学生的分数,请估算该校八年级学生中优秀等级的人数.
如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动,设运动时间为t秒, (1)请用含t的代数式分别表示出点C与点P的坐标; (2)以点C为中心,个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB. ①当⊙C与射线DE有公共点时,求t的取值范围; ②当△PAB为等腰三角形时,求t的值.
【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N. 【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小. 解:由图可知:,. ∴. ∵a≠b,∴>0. ∴M-N>0.∴M>N. 【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a . 试比较M与N的大小. (2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b, AB为c)三边满足a <b < c ,现将△ABC 补成长方形, 使得△ABC的两个顶点为长方形的两个端点,第三个顶点落 在长方形的这一边的对边上。 ①这样的长方形可以画个; ②所画的长方形中哪个周长最小?为什么? 【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?
已知二次函数的图象以A(,)为顶点,且过B(,) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至点、, 求的面积。
江阴市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。 (1)求平均每次下调的百分率。 (2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
某地区随机抽取若干名八年级学生进行历史会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表: 某地区八年级地理会考模拟测试成绩统计表
(1)填空: ①本次抽样调查共测试了名学生; ②参加地理会考模拟测试的学生成绩的中位数落在分数段上; ③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为; (2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?