下列各式在实数范围内有意义,分别求x的取值范围。
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,他手中持有的钱数(含备用零钱)与售出的土豆千克数的关系如图所示,结合图象回答下列问题. (1)农民自带的零钱是 元; (2)求降价前y与x之间的函数关系式; (3)由表达式可求降价前土豆的价格是 元∕千克; (4)降价后他按每千克0.6元将剩余土豆售完,这时他手中的钱(含备用零钱)是54元,求他一共带的土豆千克数m。
小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0). (1)A点所表示的实际意义是 ;= ; (2)求出AB所在直线的函数关系式; (3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
已知一次函数y=mx+m-2与y=2x-3的图象的交点A在y轴上,它们与x轴的交点分别为点B,点C.(1)求m的值及△ABC的面积;(2)求一次函数y=mx+m-2的图象上到x轴的距离等于2的点的坐标.
若一次函数与(,的图像相交于点,.(1)求、的值;(2)若点,在函数的图像上,求的值。
在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题: (1)直接写出甲骑自行车的速度 ;乙骑自行车的速度 ; (2)求出点M的坐标,并解释该点坐标所表示的实际意义; (3)若两人之间保持的距离不超过2km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.