如图,四边形 内接于 , 为 的直径, 为 的中点,过点 作 ,交 的延长线于点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 的半径为5, ,求 的长.
如图①,在钝角 中, , ,点 为边 中点,点 为边 中点,将 绕点 逆时针方向旋转 度 .
(1)如图②,当 时,连接 、 .求证: ;
(2)如图③,直线 、 交于点 .在旋转过程中, 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;
(3)将 从图①位置绕点 逆时针方向旋转 ,求点 的运动路程.
如图, 为 的直径, 为 上一点, 是弧 的中点, 与 、 分别交于点 、 .
(1)求证: ;
(2)求证: ;
(3)若 ,求 的值.
如图,矩形 中, , . , 分别在 , 上,点 与点 关于 所在的直线对称, 是边 上的一动点.
(1)连接 , ,求证四边形 是菱形;
(2)当 的周长最小时,求 的值;
(3)连接 交 于点 ,当 时,求 的长.
如图①,在 中, , , .求作菱形 ,使点 在边 上,点 、 在边 上,点 在边 上.
小明的作法
1.如图②,在边 上取一点 ,过点 作 交 于点 .
2.以点 为圆心, 长为半径画弧,交 于点 .
3.在 上截取 ,连接 ,则四边形 为所求作的菱形.
(1)证明小明所作的四边形 是菱形.
(2)小明进一步探索,发现可作出的菱形的个数随着点 的位置变化而变化 请你继续探索,直接写出菱形的个数及对应的 的长的取值范围.
如图, 是 的直径, 与 相切于点 ,与 的延长线交于点 , 于点 .
(1)求证: ;
(2)若 , ,求 的半径.
如图, 是 的平分线,点 在 上,以 为直径的 交 于点 ,过点 作 的垂线,垂足为点 ,交 于点 .
(1)求证:直线 是 的切线;
(2)若 ,设 的半径为 ,求 的长度.
如图, 与 相切于点 ,过点 作 ,垂足为 ,交 于点 .连接 , ,并延长 交 于点 ,与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的值.
如图,在 中,弦 与直径 垂直,垂足为 , 的延长线上有
一点 ,满足 .过点 作 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)如果 , ,求 的值;
(3)如果 ,求证: .
在矩形 的 边上取一点 ,将 沿 翻折,使点 恰好落在 边上点 处.
(1)如图1,若 ,求 的度数;
(2)如图2,当 ,且 时,求 的长;
(3)如图3,延长 ,与 的角平分线交于点 , 交 于点 ,当 时,求 的值.
如图,在 中,直径 经过弦 的中点 ,点 在 上, 的延长线交 于点 ,交过 的直线于 , ,连接 与 交于点 .
(1)求证: 是 的切线;
(2)若点 是 的中点, 的半径为3, ,求 的长.
如图, 和 是有公共顶点的等腰直角三角形, ,点 为射线 , 的交点.
(1)求证: ;
(2)若 , ,把 绕点 旋转,当 时,求 的长;
如图,已知 、 为 的两条直径, 为切线,过 上一点 作 于 ,连接 并延长交 于点 ,连接 .
(1)求证: .
(2)设 为点 关于 对称点,连接 、 ,如果 , 的半径为3,求 的值.
如图, 内接于 , 平分 交 于 ,过点 作 分别交 、 延长线于 、 ,连接 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 、 的长是关于 的方程 的两实根,且 ,求 的半径.