如图,已知 AB 、 CD 为 ⊙ O 的两条直径, DF 为切线,过 AO 上一点 N 作 NM ⊥ DF 于 M ,连接 DN 并延长交 ⊙ O 于点 E ,连接 CE .
(1)求证: ΔDMN ∽ ΔCED .
(2)设 G 为点 E 关于 AB 对称点,连接 GD 、 GN ,如果 ∠ DNO = 45 ° , ⊙ O 的半径为3,求 D N 2 + G N 2 的值.
根据要求画出下列立体图形的视图。
如图,要把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的,请说明理由.
已知:如图,△ABC中,∠BAC=90°,分别以AB、BC为边作正方形ABDE和正方形BCFG,延长DC、GA交于点P. 求证:PD⊥PG.
如图,将矩形ABCD折叠,使顶点B与D重合,折痕为EF,连接BE、DF.(1)四边形BEDF是什么四边形?为什么?(2)若AB=6cm,BC=8cm,求折痕EF的长.
某公司为了扩大经营,决定购进6台机器用于生产某种零件.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产零件的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于190个,那么为了节约资金应选择哪种方案?