初中数学

如图,以 ΔABC 的边 AC 为直径的 O AB 边于点 M ,交 BC 边于点 N ,连接 AN ,过点 C 的切线交 AB 的延长线于点 P BCP = BAN

(1)求证: ΔABC 为等腰三角形.

(2)求证: AM · CP = AN · CB

来源:2017年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C AB 的延长线上, AD 平分 CAE O 于点 D ,且 AE CD ,垂足为点 E

(1)求证:直线 CE O 的切线.

(2)若 BC = 3 CD = 3 2 ,求弦 AD 的长.

来源:2017年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, MBN = 90 ° ,点 C MBN 平分线上的一点,过点 C 分别作 AC BC CE BN ,垂足分别为点 C E AC = 4 2 ,点 P 为线段 BE 上的一点(点 P 不与点 B E 重合),连接 CP ,以 CP 为直角边,点 P 为直角顶点,作等腰直角三角形 CPD ,点 D 落在 BC 左侧.

(1)求证: CP CD = CE CB

(2)连接 BD ,请你判断 AC BD 的位置关系,并说明理由;

(3)设 PE = x ΔPBD 的面积为 S ,求 S x 之间的函数关系式.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D DE AC BA 的延长线于点 E ,交 AC 于点 F

(1)求证: DE O 的切线;

(2)若 AC = 6 tan E = 3 4 ,求 AF 的长.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图, ΔACE ΔACD 均为直角三角形, ACE = 90 ° ADC = 90 ° AE CD 相交于点 P ,以 CD 为直径的 O 恰好经过点 E ,并与 AC AE 分别交于点 B 和点 F

(1)求证: ADF = EAC

(2)若 PC = 2 3 PA PF = 1 ,求 AF 的长.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, CD O 的直径,点 B O 上,连接 BC BD ,直线 AB CD 的延长线相交于点 A A B 2 = AD · AC OE / / BD 交直线 AB 于点 E OE BC 相交于点 F

(1)求证:直线 AE O 的切线;

(2)若 O 的半径为3, cos A = 4 5 ,求 OF 的长.

来源:2017年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° ,点 M AB 的中点,连接 MC ,点 P 是线段 BC 延长线上一点,且 PC < BC ,连接 MP AC 于点 H .将射线 MP 绕点 M 逆时针旋转 60 ° 交线段 CA 的延长线于点 D

(1)找出与 AMP 相等的角,并说明理由.

(2)如图2, CP = 1 2 BC ,求 AD BC 的值.

(3)在(2)的条件下,若 MD = 13 3 ,求线段 AB 的长.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,直线 BC O 相切于点 B ,过点 A AD / / OC O 于点 D ,连接 CD

(1)求证: CD O 的切线.

(2)若 AD = 4 ,直径 AB = 12 ,求线段 BC 的长.

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

阅读与思考

请阅读下列科普材料,并完成相应的任务.

图算法

图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: F = 9 5 C + 32 得出,当 C = 10 时, F = 50 .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法.

再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?

我们可以根据公式 1 R = 1 R 1 + 1 R 2 求得 R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 120 ° 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.

图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.

任务:

(1)请根据以上材料简要说明图算法的优越性;

(2)请用以下两种方法验证第二个例子中图算法的正确性:

①用公式 1 R = 1 R 1 + 1 R 2 计算:当 R 1 = 7 . 5 R 2 = 5 时, R 的值为多少;

②如图,在 ΔAOB 中, AOB = 120 ° OC ΔAOB 的角平分线, OA = 7 . 5 OB = 5 ,用你所学的几何知识求线段 OC 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, O 为线段 PB 上一点,以 O 为圆心, OB 长为半径的 O PB 于点 A ,点 C O 上,连接 PC ,满足 P C 2 = PA PB

(1)求证: PC O 的切线;

(2)若 AB = 3 PA ,求 AC BC 的值.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 8 BC = 4 CA = 6 CD / / AB BD ABC 的平分线, BD AC 于点 E ,求 AE 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AG HAF 的平分线,点 E AF 上,以 AE 为直径的 O AG 于点 D ,过点 D AH 的垂线,垂足为点 C ,交 AF 于点 B

(1)求证:直线 BC O 的切线;

(2)若 AC = 2 CD ,设 O 的半径为 r ,求 BD 的长度.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题