如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 交 BC 于点 D , DE ⊥ AC 交 BA 的延长线于点 E ,交 AC 于点 F .
(1)求证: DE 是 ⊙ O 的切线;
(2)若 AC = 6 , tan E = 3 4 ,求 AF 的长.
已知抛物线, (1)用配方法确定它的顶点坐标、对称轴; (2)取何值时,随增大而减小? (3)取何值时,抛物线在轴上方?
在△ABC中,AB=AC=5,BC=6,求cosB、sinA.
如图,已知O是坐标原点,B、C两点的坐标分别为(3,–1)、(2,1) . (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标;
如图:已知△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135° 求证:△EAC∽△CBF
清明节期间,某中学团委组织八年级部分学生去离校2.4千米的某烈士陵园扫墓,回来时乘公交车所花时间比去时步行少用了36分钟,已知公交车速度是学生步行速度的5倍,求学生的步行速度.