初中数学

如图 ΔABC 为等边三角形,以 BC 为边在 ΔABC 外作正方形 BCDE ,延长 AB 分别交 CE DE 的延长线于点 F N CH AF 于点 H EM AF 于点 M ,连接 AE

(1)判断 ΔCHB ΔBME 是否全等,并说明理由;

(2)求证: A E 2 = AC · AF

(3)已知 AB = 2 ,若点 P 是直线 AF 上的动点,请直接写出 ΔCEP 周长的最小值.

来源:2018年辽宁省丹东市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在以线段 AB 为直径的 O 上取一点 C ,连接 AC BC .将 ΔABC 沿 AB 翻折后得到 ΔABD

(1)试说明点 D O 上;

(2)在线段 AD 的延长线上取一点 E ,使 A B 2 = AC · AE .求证: BE O 的切线;

(3)在(2)的条件下,分别延长线段 AE CB 相交于点 F ,若 BC = 2 AC = 4 ,求线段 EF 的长.

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BAD = 90 ° ,点 E BC 的延长线上,且 DEC = BAC

(1)求证: DE O 的切线;

(2)若 AC / / DE ,当 AB = 8 CE = 2 时,求 AC 的长.

来源:2018年辽宁省大连市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AB 为直径,点 P O 外一点,且 PA = PC = 2 AB ,连接 PO AC 于点 D ,延长 PO O 于点 F

(1)证明: AF ̂ = CF ̂

(2)若 tan ABC = 2 2 ,证明: PA O 的切线;

(3)在(2)条件下,连接 PB O 于点 E ,连接 DE ,若 BC = 2 ,求 DE 的长.

来源:2020年四川省自贡市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC O 的弦, OD AB OD AC 的延长线交于点 D ,点 E OD 上,且 CE = DE

(1)求证:直线 CE O 的切线;

(2)若 OA = 2 3 AC = 3 ,求 CD 的长.

来源:2018年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 E F O 上,且 BF ̂ = 2 BE ̂ ,连接 OE AF ,过点 B O 的切线,分别与 OE AF 的延长线交于点 C D

(1)求证: COB = A

(2)若 AB = 6 CB = 4 ,求线段 FD 的长.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABM Rt Δ ADN 的斜边分别为正方形的边 AB AD ,其中 AM = AN

(1)求证: Rt Δ ABM Rt Δ AND

(2)线段 MN 与线段 AD 相交于 T ,若 AT = 1 4 AD ,求 tan ABM 的值.

来源:2018年湖南省株洲市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

正方形 ABCD 的边长为1,点 O BC 边上的一个动点(与 B C 不重合),以 O 为顶点在 BC 所在直线的上方作 MON = 90 °

(1)当 OM 经过点 A 时,

①请直接填空: ON       (可能,不可能)过 D 点;(图1仅供分析)

②如图2,在 ON 上截取 OE = OA ,过 E 点作 EF 垂直于直线 BC ,垂足为点 F ,作 EH CD H ,求证:四边形 EFCH 为正方形.

(2)当 OM 不过点 A 时,设 OM 交边 AB G ,且 OG = 1 .在 ON 上存在点 P ,过 P 点作 PK 垂直于直线 BC ,垂足为点 K ,使得 S ΔPKO = 4 S ΔOBG ,连接 GP ,求四边形 PKBG 的最大面积.

来源:2017年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

阅读与思考

请阅读下列科普材料,并完成相应的任务.

图算法

图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: F = 9 5 C + 32 得出,当 C = 10 时, F = 50 .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法.

再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?

我们可以根据公式 1 R = 1 R 1 + 1 R 2 求得 R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 120 ° 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.

图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.

任务:

(1)请根据以上材料简要说明图算法的优越性;

(2)请用以下两种方法验证第二个例子中图算法的正确性:

①用公式 1 R = 1 R 1 + 1 R 2 计算:当 R 1 = 7 . 5 R 2 = 5 时, R 的值为多少;

②如图,在 ΔAOB 中, AOB = 120 ° OC ΔAOB 的角平分线, OA = 7 . 5 OB = 5 ,用你所学的几何知识求线段 OC 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, O 为线段 PB 上一点,以 O 为圆心, OB 长为半径的 O PB 于点 A ,点 C O 上,连接 PC ,满足 P C 2 = PA PB

(1)求证: PC O 的切线;

(2)若 AB = 3 PA ,求 AC BC 的值.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 8 BC = 4 CA = 6 CD / / AB BD ABC 的平分线, BD AC 于点 E ,求 AE 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AG HAF 的平分线,点 E AF 上,以 AE 为直径的 O AG 于点 D ,过点 D AH 的垂线,垂足为点 C ,交 AF 于点 B

(1)求证:直线 BC O 的切线;

(2)若 AC = 2 CD ,设 O 的半径为 r ,求 BD 的长度.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题