如图,在 Rt Δ ABM 和 Rt Δ ADN 的斜边分别为正方形的边 AB 和 AD ,其中 AM = AN .
(1)求证: Rt Δ ABM ≅ Rt Δ AND ;
(2)线段 MN 与线段 AD 相交于 T ,若 AT = 1 4 AD ,求 tan ∠ ABM 的值.
与成反比例,当=2时,=-1,求函数解析式和自变量的取值范围.
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交轴于A、B两点,开口向下的抛物线经过点A、B,且其顶点在⊙C上. (1)求出A、B两点的坐标; (2)试确定此抛物线的解析式; (3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
某商场购进一批单价为5元的日用商品.如果以单价7元销售,每天可售出160件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量每天就相应减少20件。设这种商品的销售单价为x元,商品每天销售这种商品所获得的利润为y元. (1)给定x的一些值,请计算y的一些值.(每空1分,共4分)
(2)求y与x之间的函数关系式及自变量x的取值范围; (3)请探索:当商品的销售单价定为多少元时,该商店销售这种商品获得的利润最大?这时每天销售的商品是多少件?
如图,已知二次函数的图象经过A(2,0)、B(0,―6)两点. (1)求这个二次函数的解析式. (2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积.
如图,⊙O的直径AB平分弦CD, CD ="10cm," AP: PB="1" : 5.求⊙O的半径.