(贵港)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
某超市经销一种销售成本为每件30元的商品.据市场调查分析,如果按每件40元 销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥40),一周的销售量为y件. (1)写出y与x的函数关系式(标明x的取值范围); (2)设一周的销售利润为s元,写出s与x的函数关系式,并确定当单价在什么范围内变化时, 利润随着单价的增大而增大; (3)在超市对该种商品投入不超过8800元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
在△ABC中,∠B=90º,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D (1)试判断直线AC与⊙D的位置关系,并说明理由; (2)若点E在AB上,且DE=DC,当AB=3,AC=5时,求线段AE长.
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同. (1)求摸出1个球是白球的概率; (2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表解决); (3)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.
如图,甲楼AB的高度为36m,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为60°, (1)求乙楼CD的高度; (2)从A处发现乙楼下面的店面房上的广告牌顶部E处俯角也是45°,请你确定广告牌顶部E距地面的高度是多少?(结果都保留根号)
甲、乙两校参加泰兴市科技文化中心举办的学生英语口语竞赛,两校参赛人数相等. 比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. (1)请你将图1的统计图补充完整; (2)在图2中,“7分”所在扇形的圆心角等于___________度; (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数并从平均分和中位数的角度分析哪个学校成绩较好? (4)如果该举办单位要组织8人的代表队参加省级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析应选哪所学校?